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A Whang (2010) with multiple equilibria

In this Appendix, we consider a specification of the crisis-signaling game from Whang

(2010), restate equilibrium choice probabilities, and demonstrate that multiple equilibria

can exist under his more general specification. Figure 7 describe the payoffs. Define
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Figure 7: Crisis-signaling game from Whang (2010)

A

B SQ
(S̄A + εSA, S̄B)

ACD
(V̄A + εV A, C̄B + εCB)

BD(
ā+ εa, V̄B + εV B

)SF(
W̄A + εWA, W̄WB + εB

)

Challenge Not challenge

ResistNot resist

Fight Not fight

εA = (εSA, εV A, εWA, εa) and εB = (εV B, εWB, εCB). We assume εA and εB are inde-

pendent and that εi is drawn from a multivariate normal distribution with mean 0 and

variance-covariance matrix Σi. Furthermore, let θ denote the vector of exogenous pa-

rameters of interest, i.e., θ =
(
ā, CB,

(
Si, Vi, W̄i,Σi

)
i=A,B

)
. As before, Perfect Bayesian

equilibria (equilibria, hereafter) for the game can be represented as choice probabilities,

p = (pC , pR, pF ). To aid in the explication of equilibrium choice probabilities, we introduce

the following notation:

SA = S̄A + εSA

VA = V̄A + εV A

WA = W̄A + εWA

a = ā+ εa

CB = C̄A + εCB

WB = W̄B + εWB

VB = V̄B + εV B.

For a fixed vector of choice probabilities, p, define the following:

∆UpFR = pFWB + (1− pF )VB − CB
∆UpRSQ,BD = SA − (1− pR)VA − pRa

∆UpRSQ,SF = SA − (1− pR)VA − pRWA

∆USF,BD = WA − a

The following result characterizes the equilibrium choice probabilities of this game.
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Result 2 (Whang, 2010) An equilibrium p̃ exists, and p̃ is an equilibrium if and only if it
satisfies the following system of equations:

p̃C = 1− Φ2

 E[∆UpRSQ,BD]√
Var[∆UpRSQ,BD]

,
E[∆UpRSQ,SF ]√
Var[∆UpRSQ,SF ]

,Cor[∆UpRSQ,BD,∆U
pR
SQ,SF ]

 ≡ g(p̃R; θ),

(11)

p̃F = Φ2

 E[∆USF,BD]√
Var[∆USF,BD]

,
E[−∆UpRSQ,SF ]√
Var[∆UpRSQ,SF ]

,Cor
[
∆USF,BD,−∆UpRSQ,SF

] (g(p̃R; θ))−1 ≡ h(p̃R; θ),

(12)

and

p̃R = Φ

 E[∆UpFR ]√
Var[∆UpFR ]

 ≡ f(p̃F ; θ). (13)

As before fixing a vector of exogenous parameters, θ, equilibria are pinned down by B’s

probability of resisting, where p̃R satisfies f ◦h(p̃R; θ) = p̃R. Given an equilibrium probabil-

ity of resisting, p̃R, A’s probabilities of challenging and fighting are defined using Equations

11 and 12, respectively. Notice that ∆UpFR , ∆UpRSQ,BD, ∆UpRSQ,SF , and ∆USF,BD are en-

dogenous quantities. To fully specify the equilibrium choice probabilities, the proceeding

result states their variances and covariances as functions of the exogenous parameters, θ.

To do so, we maintain the following normalizing assumptions from Whang (2010): S̄A = 0,

Var [εSA] = 0, C̄B = 0, Var [εCB] = 0, Var [ā] = 1, and Var [εWB] = 1.

Result 3 Under the normalization assumption, the following hold.

1. Var[∆UpFR ] = p2
F + (1− pF )2Var[εV B] + 2pF (1− pF )Cov[εV B, εWB]

2. Var[∆UpRSQ,BD] = (1− pR)2Var[εa] + p2
R + 2pR(1− pR)Cov[εV A, εa]

3. Var[∆UpRSQ,SF ] = (1− pR)2Var[εa] + p2
RVar[εWA] + 2pR(1− pR)Cov[εV A, εWA]

4. Var[∆USF,BD] = 1 + Var[εWA]− 2Cov[εa, εWA]

5. Cov[∆UpRSQ,BD,∆U
pR
SQ,SF ] = (1 − pR)2Var[εV A] + (1 − pR)pRCov[εV A, εWA] + pR(1 −

pR)Cov[εV A, εa] + p2
RCov[εa, εWA]

6. Cov[∆UpRSQ,BD,−∆UpRSQ,SF ] = (1−pR)Cov[εV A, εWA]+pRVar[εWA]−(1−pR)Cov[εV A, εa]−
pRCov[εa, εWA].

Using Results 2 and 3, it is straightforward to modify the PL, NPL, and CMLE esti-

mation routines. One additional difficulty arises, however. Currently, we provide analytical

derivatives for optimizers in R. With the additional parameters in ΣA and ΣB, additional
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derivatives would need to be provided or automatic differentiation could be used. We de-

scribe the latter approach in Appendix D.

Finally, we provide a numerical example where multiple equilibria arise in this more

general model, even outside the assumptions in Lewis and Schultz (2003). For payoffs at

terminal nodes, we choose the values in the first column of Table 1Parameters for Monte

Carlo experimentstable.caption.2. To specify the variance-covariance matrices, σA and σB,

we choose Var[εV A] = 2, Var[εWA] = Var[εV B] = 1
2 , Cov[εV A, εa] = Cov[εV A, εWA] = 0, and

Cov[εa, εWA] = Cov[εV B, εWB] = − 7
10 . Under these parameters, there are three equilibria:

p̃R ∈ {0.01, 0.63, 0.90}.

B Regularity and best-response stability

This Appendix contains the formal arguments for two additional results discussed in

the main manuscript. First we define the regularity refinement from Harsanyi (1973) and

van Damme (1996). We use δ(pR; θ) to denote the first derivative of f ◦ h with respect to

pR given parameters θ.

Definition 1 An equilibrium p̃R is regular if δ (p̃R; θ) 6= 1.

With this definition we can now state our result concerning the regularity of equilibria.

Result 4 For almost all θ, all equilibria of the crisis-signaling game are regular.

To prove the result and subsequent ones, it is more straightforward to work with the

function F : (0, 1)× R8 → R such that

F (pR; θ) = f ◦ h(pR; θ)− pR,

where p̃R is an equilibrium if and only if F (p̃R; θ) = 0. We state two intermediary results

before proving result 4. The first is from Jo (2011a) and the second is the parameterized

Transversality Theorem.

Lemma 1 For all θ, limpR→0 f ◦ h(pR; θ) > 0 and limpR→1 f ◦ h(pR; θ) < 1.

Thus, there are no equilibria at the boundaries. In addition, for any fixed θ, there exists

ε > 0 and ν > 0 such that F (ε; θ) > 0 and F (1− ν; θ) < 0

Theorem 1 (Transversality Theorem) Consider an open set X ⊆ Rn. Let L : X×Rs → Rn
be continuously differentiable. Assume that the Jacobian D(x,y)L has rank n for all (x, y) ∈
X × Rs such that L(x, y) = 0. Then, for almost all y′ ∈ Rs, the Jacobian DxL has rank n
for all x ∈ X such that L(x, y′) = 0.

Proof of Result 4. Note that p̃R is a regular equilibrium if and only if DpRF (pR; θ) 6= 0.

To prove Result 4, we verify the conditions of the Transversality condition, where in our
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application, L = F and (x, y) = (pR; θ), which means n = 1 and s = 8. First, note that

F is continuously differentiable, because f ◦ h is the composition of normal cumulative

distribution functions and polynomial functions, and F is defined over the open interval

(0, 1).

Third and finally, we show that D(pR;θ)F (pR; θ) has at least one non-zero element

(i.e., rank 1) when F (pR; θ) = 0. To do this, we show a stronger result: for all (pR; θ),

D(pR;θ)F (pR; θ) 6= 0. To see this, consider DW̄B
F (pR; θ). By Result 1Jo, 2011aresult.1, the

functions g and h are constant in parameter W̄B, that is, DW̄B
g(pR; θ) = DW̄B

h(pR; θ) = 0.

Then we have

DW̄B
F (pR; θ) = DW̄B

f ◦ h(pR; θ)

= DW̄B
Φ

(
h(pR; θ)W̄B + (1− h(pR; θ))VB − CB

h(pR; θ)

)
= DW̄B

Φ

(
W̄B +

(1− h(pR; θ))VB − CB
h(pR; θ)

)
= φ

(
W̄B +

(1− h(pR; θ))VB − CB
h(pR; θ)

)
6= 0,

which implies D(pR;θ)F (pR; θ) 6= 0 as required.

Although the regularity refinement does not generically reduce the number of equilibria,

showing that all the equilibria are regular is advantageous for applied empirical research.

Regular equilibria can be implicitly expressed as continuous functions of parameters. This

property is particularly important in empirical analyses: if we uncover noisy, but sufficiently

accurate estimates of θ, then equilibrium choice probabilities will be close to their true values

as well. In addition, comparative statics (predicted probabilities) on regular equilibria will

be well behaved, i.e., the equilibrium will not vanish if we vary the data or parameters by

some small amount.

Our next result focuses on best response iteration. Before stating the result, we define

best-response stable and best-response unstable equilibria.

Definition 2 An equilibrium p̃R is best-response stable if there exists ε > 0 such that for
all p0

R ∈ (p̃R − ε, p̃R + ε) the sequence

pkR = f ◦ h(pk−1
R ; θ), k ∈ N

converges to p̃R.

The next definition introduces best-response unstable equilibria, which is not simply the

negation of Definition 2.
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Definition 3 An equilibrium p̃R is best-response unstable if there exists ε > 0 such that
for all p0

R ∈ (p̃R − ε, p̃R + ε), with p0
R 6= p̃R, the sequence

pkR = f ◦ h(pk−1
R ; θ), k ∈ N

leaves the interval (p̃R − ε, p̃R + ε) at least once. That is, there exists n ∈ N such that
pnR /∈ (p̃R − ε, p̃R + ε)

With these definitions, we are now ready to state Results 5.

Result 5 If all equilibria are regular, then following hold:

1. There is a finite number of equilibria.

2. If there are multiple equilibria, then there exists a best-response unstable equilibrium.

To prove Result 5, we need an intermediate result, that is standard in nonlinear dynamics

and fixed point iteration. See Theorem 6.5 in Holmgren (1994).

Theorem 2 Consider an equilibrium p̃R. If |δ(p̃R; θ)| < 1, then p̃R is best-response stable.
If |δ(p̃R; θ)| > 1, then p̃R is best-response unstable.

To end this Appendix, we prove Result 5.

Proof of Result 5(1). By assumption all equilibria are regular, which implies DpRF (p̃R; θ) 6=
0 for all p̃R such that F (p̃R; θ) = 0. Then the Implicit Function Theorem implies that every

equilibrium p̃R is locally isolated. Because F is continuous, it has closed level sets, so

the set of equilibria is closed. Because equilibria fall within the interval (0, 1), the set of

equilibria is bounded, and therefore compact. As a compact set of locally isolated points,

the equilibrium set is finite.

Proof of Result 5(2). Assume all equilibria are regular. By Result 5(1), we can write the

set of equilibria as {p̃[1], . . . , p̃[k]} where k is the number of equilibria. Order the set such

that a < b implies p̃[a] < p̃[b]. By assumption, k ≥ 2, and we claim that p̃[2] is best-response

unstable. To do so, the proof consists of two steps. In step 1, we prove that δ(p̃[1]; θ) < 1. In

step 2, we prove that δ(p̃[2]; θ) > 1, which, by Theorem 2, implies that p̃[2] is best-response

unstable.

Step 1: Suppose not. That is, suppose δ(p̃[1]; θ) ≥ 1. By regularity, δ(p̃[1]; θ) > 1.

Because F is continuously differentiable and DpRF = δ(p̃
[1]
R ; θ)− 1, there exists ε > 0 such

that F is strictly increasing on the interval (p̃
[1]
R −ε, p̃

[1]
R ). Because F (p̃

[1]
R ; θ) = 0, this implies

that there exists a p′R ∈ (p̃R − ε, p̃[1]
R ) such that F (p′R; θ) < 0. By Lemma 1, there exists

ν ∈ (0, p′R) such that F (ν; θ) > 0. Then the Intermediate Value Theorem Implies that there

exists a p̃R ∈ (ν, p′R) such that F (p̃R; θ) = 0, but this contradicts the assumption that p̃
[1]
R

is the smallest equilibrium. Hence, we conclude that δ(p̃[1]; θ) < 1

Step 2: Suppose not. That is, suppose δ(p̃[2]; θ) ≤ 1. Because all equilibria are regular,

δ(p̃
[2]
R ; θ) < 1, implying DpRF (p̃

[2]
R ; θ) < 0. This, along with the facts that F is continuously

6



differentiable and F (p̃
[2]
R ; θ) = 0, implies there exists (arbitrarily small) ε > 0 such that

F (p̃
[2]
R − ε; θ) > 0.

In Step 1, we showed that δ(p̃
[1]
R ; θ) < 1. Because F (p̃

[1]
R ; θ) = 0, there exists (arbitrarily

small) ν > 0 such that F (p̃
[1]
R + ν; θ) < 0 because F is continuously differentiable. So we

have F (p̃
[2]
R − ε; θ) > 0 and F (p̃

[1]
R + ν; θ) < 0. Then by the Intermediate Value Theorem

there exists an equilibrium p̃′R such that

p̃
[1]
R + ν < p̃′R < p̃

[2]
R − ε.

But this contradicts the assumption that p̃
[2]
R is the second smallest equilibrium. Thus, we

conclude δ(p̃
[2]
R ; θ) > 1. As such, p̃

[2]
R is best-response unstable by Theorem 2.

C Further Monte Carlo results

C.1 Multiple equilibria

This appendix contains additional results from the Monte Carlo experiment where the

data are generated under parameters that are consistent with multiple equilibria. A single

covariate determines the equilibirum selection. The parameter values used to generate the

data can be found in Table 1Parameters for Monte Carlo experimentstable.caption.2. Here

we consider the estimators’ bias, variance, rate of convergence, and computation time. Root

mean-squared error is presented in the main text.

Figure 8: Bias in signaling estimators with multiple equilibria.
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Figure 9: Variance in signaling estimators with multiple equilibria.
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Figure 10: Convergence rates in signaling estimators with multiple equilibria.
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Figure 11: Computational time in signaling estimators with multiple equilibria.
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C.2 Unique equilibrium

This appendix contains additional results from the Monte Carlo experiment where the

data are generated from a version of the game with a unique equilibrium. The parameter

values used to generate the data can be found in the final column of Table 1Parameters for

Monte Carlo experimentstable.caption.2. Here we consider the estimators’ bias, variance,

computation time, and rate of convergence.

Figure 12: Bias in signaling estimators with a unique equilibrium.
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Figure 13: Variance in signaling estimators with a unique equilibrium.
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Figure 14: Computational time in signaling estimators with a unique equilibrium.
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Figure 15: Convergence rates in signaling estimators with a unique equilibrium.
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Figure 16: RMSE in signaling estimators with more unstable equilibria.
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C.3 Best-response stability

The best performing solutions make use of best response functions, which begs the ques-

tion: How sensitive are the estimators to best-response unstable equilibria? To answer this

question, we conduct another Monte Carlo experiment. Here, we assume payoffs are gener-

ated as in the multiple setting in Table 1Parameters for Monte Carlo experimentstable.caption.2,

and the equilibrium selection rule follows the left-hand graph in Figure 2The equilibrium

correspondences for numerical examplesfigure.caption.3. Let q ∈ [0, 1] denote the percent-

age of unstable equilibria. For q ·D dyads, xd is draw from a uniform distribution over the

interval (1
3 ,

2
3). For the remaining D−q ·D observations, xd is drawn uniformly from the in-

tervals (0, 1
3) or (2

3 , 1) with equal probability. Using Theorem 2, the middle equilibrium, i.e.,

the one selected when xd ∈ (1
3 ,

2
3), is unstable, while the other equilibria are best-response

stable. As we vary q from 0 to 1, we analyze how the estimators’ performance varies as the

data are generated with a larger proportion of best-response unstable equilibria. In this

experiment, we set D = 200 and T = 1000, which means there is a large amount of data

as to better isolate the effects of unstable equilibria. For all values of q, we draw xd, select

the corresponding equilibria, and estimate the model 1, 000 times. We expect the PL and

NPL to perform worse as q approaches 1.1

Figure 16 summarizes the results, where we vary the percentage of unstable equilibria

along the horizontal axis and plot log RMSE along the vertical axis. Unsurprisingly, the

1Following results from Kasahara and Shimotsu (2012) we check that the spectral radius of the Jacobian
of the best-response function is greater than 1 under these conditions. We find that the NPL should struggle
in all situations where q ≥ 0.01.
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Figure 17: Convergence rates in signaling estimators with unstable equilibria.
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NPL performs much worse in terms of RMSE as more data are generated from the unstable

equilibrium. The PL, tML, and CMLE all get slightly worse as this proportion increases,

but this effect is far less pronounced. Despite the fact that the NPL is designed to struggle

here, it still outperforms the PL when less than 40% of the data are from unstable equilibria.

Of further note, both the PL and NPL still outperform the tML across the board, despite

their reliance on best-response iteration.

Beyond the potential for statistical problems, we also want to consider the compu-

tational issues that arise when unstable equilibria dominate in the data. This trend is

illustrated in Figure 17, where horizontal axis is the proportion of observations with unsta-

ble equilibria and the vertical axis is the proportion of successful Monte Carlo iterations.

Notice, convergence rates of all estimators, besides the PL, decrease once the proportion

of unstable equilibria approaches 60–80%. Thus, conditional on converging, the estimators

return results with fairly reasonable RMSE even with a large proportion of unstable equi-

libria. They are all generally less likely to converge when unstable equilibria permeate the

data, however.

C.4 Multivariable Monte Carlo

In this section we consider a different Monte Carlo experiment designed to better capture

real world situations. Specifically, we use our application to economic sanctions data to

construct an experiment with many variables that appear across different utilities.

To build the experiment we use the same specification and independent variables as

the economic sanctions application above. We then take the CMLE estimates from Table

3Economic sanctions applicationtable.caption.8 and fix them as the true parameter values.
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Using these parameters and the original independent variables we generate a new dependent

variable (of length 120 for each dyad) for each Monte Carlo simulation and refit the model

using tML, PL, NPL, and CMLE.2 For each parameter we then compute the root mean-

squared error (RMSE).

Table 4 shows the relative performance of each or our proposed methods to the tML.

Here, values less than one mean that our estimator does better than the traditional method,

while values greater than one mean than tML performed better on estimating that param-

eter. Values close to zero mean that our approach does a lot better than the tML. All cases

where the tML does better are bolded, which happens in only four cases out of sixty (about

7%).

Overall, the PL has a little trouble with a few parameters in B’s utilities, which is

consistent with our other Monte Carlo results. The NPL and CMLE both do very well

compared to the tML. The last row in Table 4 shows the relative improvement in the

multivariate RMSE, where we see that all three of our approaches are better than the tML

in this experiment.

Table 4: Relative RMSE of Estimates Compared to tML

PL NPL CMLE

SA: Econ. DepA 0.48 0.90 0.61
SA: DemA 0.69 0.42 0.45

SA: Contiguity 0.14 0.07 0.05
SA: Alliance 0.18 0.20 0.20
VA: Const. 0.77 0.35 0.28
VA: CostsA 0.99 0.65 0.59
CB: Const. 0.79 0.51 0.50

CB: Econ. DepB 0.38 0.29 0.22
CB: CostsB 0.52 0.29 0.20

CB: Contiguity 2.43 0.13 0.11
CB: Alliance 0.37 0.40 0.36
W̄A: Const. 0.07 0.03 0.03

W̄A: Econ. DepA 0.98 1.12 0.39
W̄A: DemA 0.41 0.23 0.26

W̄A: Cap. Ratio 0.26 0.22 0.12
W̄B: Const. 1.27 0.83 0.79
W̄B: DemB 6.48 0.58 0.28

W̄B: Cap. Ratio 0.82 0.52 0.37
ā: Const. 0.07 0.04 0.03
ā: DemA 0.44 0.26 0.29

Multivariate RMSE 0.84 0.56 0.52

2Note that in the case of CMLE, this is equivalent to using a parametric bootstrap to build standard
errors.
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D Implementation details

In our economic sanctions application we fit the CMLE using the program IPOPT

(Interior Point OPTimizer), which is an open-source optimizer designed to handle large

scale problems (Wächter and Biegler 2006). In trials, IPOPT has better performance

properties than other optimizers such as sequential quadratic solvers (found in Python’s

scipy.optimize module), a version of the Augmented Lagrangian Method (from R’s alabama

package), and alternative interior-point methods (MATLAB’s fmincon).

The main difficulty in using interior-point methods is that they require an accurate

second derivative of the Lagrangian associated with the problem in Equation 10Constrained

MLEequation.3.10. We find that finite difference approximations are insufficient. As such,

we use the program ADOL-C, software for algorithmic differentiation (AD) (Griewank,

Juedes and Utke 1996; Walther and Griewank 2012), to precisely compute the Hessian.

The AD software allows us to only supply the log-likelihood and constraint function from

Equation 10Constrained MLEequation.3.10. The AD program repeatedly applies the chain

rule to our functions to compute first- and second-order derivatives. In all uses of the

CMLE, we use IPOPT and ADOL-C within Python 2.7.15 on Ubuntu 18.04 by calling the

pyipopt module developed by Xu (2014) and the pyadolc module developed by Walter

(2014), respectively.

D.1 Standard Errors

Following current practices, the tML standard errors are from the outer product of

gradients estimator (sometimes called the BHHH estimator). Asymptotic standard errors

for the other approaches are provided below.

The asymptotic standard errors for the PL estimates follow from standard results on

two-step maximum likelihood estimation (e.g., Murphy and Topel 1985), such that

V̂ar(β̂PL) = Ω̂−1
β + Ω̂−1

β Ω̂pΣ̂Ω̂T
p Ω̂−1

β .

Here Ω̂β and Ω̂p are outer product of gradients estimators and Σ̂ is the estimated first-stage

covariance matrix, such that

Ω̂β = JβPL(β̂PL|p̂R, p̂F, Y,X)TJβPL(β̂PL|p̂R, p̂F, Y,X)

Ω̂p = JβPL(β̂PL|p̂R, p̂F, Y,X)TJpR,pF
PL (p̂R, p̂F|β̂PL, Y,X)

Σ̂ = V̂ar(p̂R, p̂F),

where JxPL is the Jacobian of the PL likelihood with respect to x. In our applications, we use

a non-parametric bootstrap to produce Σ̂, which is the covariance matrix of the first-stage

(random forest) estimates.

16



Aguirregabiria and Mira (2007) provide asymptotic standard errors for the NPL esti-

mates that converges after n iterations as

V̂ar(β̂NPL) =
(

Ω̂β + Ω̂p(I− ψ̂T
p )−1ψ̂β

)−1
Ω̂β

(
Ω̂β + ψ̂T

β (I− ψ̂p)−1Ω̂T
p

)−1
.

Here Ω̂β and Ω̂p are still outer product of gradients estimators, but they are now given as

Ω̂β = JβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)TJβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)

Ω̂p = JβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)TJpR,pF
PL (p̂R,n, p̂F,n|β̂NPL, Y,X),

while ψ̂p and ψ̂β are the Jacobians of the best-response function with respect to (pR,pF)

and β, respectively, and evaluated at the NPL estimates.

Finally, the asymptotic standard errors for the CMLE are computed using Silvey (1959,

Lemma 6), such that

V̂ar
((
β̂, p̂R

)
CMLE

)
=

[
Ĥ + ω̂T ω̂ − ω̂T

−ω̂ 0

]−1

1,2,...,D+`

.

Here, Ĥ is the Hessian of the CMLE’s log-likelihood with respect to the full parameter

vector, evaluated at the estimates, ` is the length of β, and

ω̂ = J
(β,pR)
f◦h

(
(p̂R, β̂)CMLE |Y,X

)
is the Jacobian of the CMLE’s equilibrium constraint with respect to the full parameter

vector and evaluated at the estimates. Note that the total size of the matrix is 2D+`, while

the covariance matrix of the full parameter vector is composed of only the first D + ` rows

and columns. The remaining entries relate to the D Lagrange multipliers used to solve the

constrained optimization problem.
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E Traditional ML and starting values

In this appendix, we are interested in the effects that starting values have on the tML’s

performance. To do this, we focus on two questions: why has past work found that the

tML is consistent when the data are generated by a unique equilibrium, and can the tML

be improved by just giving it better starting values?

Regarding the first question, our Monte Carlo experiments demonstrate that the tML

may not be consistent even when there is a unique equilibrium in the signaling game that

is generating the data. The reason such problems arise is that the maximization routine

will oftentimes evaluate the likelihood function at a guess of the parameters where multiple

equilibria arise. In this case, the traditional approach will select an equilibrium in an ad-

hoc fashion, which may encourage the maximization routine to move away from the correct

parameters. This may be surprising as both Jo (2011a) and Bas, Signorino and Whang

(2014) conduct similar Monte Carlo experiments and conclude that the tML performs well

when the data were generated with parameters that admit a unique equilibrium.3

To the best of our knowledge, the differences arise from starting values. In our study,

starting values for θ were drawn from a standard uniform distribution. In Jo (2011a), the

starting values are the true values from the data generating process (Jo 2011b). Although

we were not able to locate replication materials from Bas, Signorino and Whang (2014),

we do conduct an additional Monte Carlo experiment to investigate the possibility that

differences in starting values lead to different results. To do this, we reproduce our Monte

Carlo experiments from the main text, but now we use different starting values for the tML.

First, we follow Jo (2011a) and use the true data generating values as starting values to

see if this accounts for the differences we observed between our results and hers. Second,

we use the PL estimates as starting values to explore if our Monte Carlo results are driven

by choices over starting values. The motivation for this second question is based on the

fact that we use the PL as a launching point for the other methods we consider. The NPL

builds on the PL by construction, and we use the PL estimates as starting values for the

CMLE in order to improve the stability of the constrained optimization problem. These

approaches naturally raise the question of whether the tML can be improved by starting it

at the PL estimates.

Figure 18 graphs the logged RMSE of the estimation procedures as we vary the number

of dyads D and the number of observations T . In a similar manner, Figure 19 reports the

logged RMSE for an experiment where there are multiple equilibria at the true parameters.

Note, that the PL, NPL, and CMLE results in these figures are identical to the results re-

ported in Figures 4RMSE in signaling estimators with a unique equilibriumfigure.caption.5

3Jo (2011a, p. 357) writes “It is easy to see that when there is a unique equilibrium, the estimates get
closer to their true values as the number of observations increases.” Bas, Signorino and Whang (2014, p. 26)
write “All coefficients on average are estimated very close to the true parameter values, and the accuracy of
the estimates increases as the sample size increases.”
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Figure 18: RMSE with a unique equilibrium and different starting values.
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Figure 19: RMSE with multiple equilibria and different starting values.
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and 3RMSE in signaling estimators with multiple equilibria.figure.caption.4, respectively.

There are three major takeaways.

First, starting the tML procedure at the true values greatly improves the tML’s per-

formance. This benefit is most pronounced when there is a unique equilibrium at the true

values. This explains the consistency findings from Jo (2011a) and Bas, Signorino and

Whang (2014). However, these values are not known a priori in practice, which limits the

usefulness of this result.

Second, starting the tML procedure at the PL estimates offers some improvement over

the results in the main text. However, the improvements are not enough to make the tML

a justifiable method. In practice, the tML only notably better than the PL when it has: (i)

informative starting values, (ii) there is a unique equilibrium in the data generating game,

and (iii) there are many within-game observations. If any of these three conditions fails,

the PL tends to be at least as well and is sometimes better than the tML while the NPL

is almost always better and the CMLE is always better. Given that we can never know if

condition (ii) holds, the tML is never a good choice.

Third, if all three of the above conditions hold, the CMLE is a better choice than the

tML with PL starting values. The only approach that rivals the CMLE when there are

multiple within-game observations is when conditions (ii) and (iii) hold and the procedure

is started at the true parameter values. Of course, we never have the true values to use as a

starting point, and we still never know if condition (ii) holds. As such, our main conclusions

hold even when we try to improve the tML by starting it at the PL values.
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Figure 20: Log-likelihood function with an imposed selection rule
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F Additional problems with traditional ML

F.1 Discontinuous likelihood

As mentioned in the main text, ad hoc equilibrium selection is one possible solution to

the tML’s troubles. However, such a modification introduces discontinuities into the tML’s

log-likelihood function. We demonstrate this in Figure 20. Here, we graph the log-likelihood

as a function of the parameter β̂1
W̄B

(the true value is β1
W̄B

= −2.9), where data are gen-

erated using the values in Table 1Parameters for Monte Carlo experimentstable.caption.2,

column 1, the equilibrium selection in Figure 2The equilibrium correspondences for numer-

ical examplesfigure.caption.3, and D ∈ {1, 10} with T = 200.

The main thing to note here is that not only are there discontinuities in the log-

likelihood, but also that the number of discontinuities is increasing in D. In many interna-

tional relations studies, the number of dyads under consideration can be in the hundreds

or thousands. Having a likelihood function with that many jumps in it is extremely dif-

ficult to optimize using ordinary means. Global methods are a possibility here, but the

computational cost is cost-prohibitive compared to the PL, NPL, or CMLE.

F.2 Sensitivity to implementation choices

Table 5 illustrates the sentivity of the tML routine to different implementation choices.

In the first column, we reprint Model 1 from the main text where the tML routine uses a

Newton solver to compute an equilibrium for each dyad d and each guess of the parameter

value θ. In Model 5, we change the equilibrium selection method used in the tML. Here,

for each guess of the parameter values and for each dyad, we compute all equilibria and

choose the equilibrium that maximizes B’s probability of resisting, i.e., p̃dR. Starting values

and other implementation choices for these routines were identical. In Model 6, we use

the equation solver from Model 1, but we change the starting values for the optimization

procedure, where starting values were those from the CMLE estimates in the main text.
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Table 5: tML with different solvers and starting values

tML tML tML
Newton Solver Select Largest Eq. PL start values

Model 1 Model 5 Model 6

ā: Const. −0.56 −0.76∗ −2.73∗

(0.77) (0.14) (0.16)
ā: DemA −0.00 0.06∗ −0.00

(0.01) (0.01) (0.09)

Log L -4102.76 -4302.08 -3950.49
D × T 418× 120 418× 120 418× 120

Notes: ∗p < 0.05

Standard Errors in Parenthesis

The main thing to note in Table 5, is that implementation choices lead to very different

substantive results. In the first column, the model finds no evidence for audience costs of

any kind. In the second column, both the constant and democracy are significant, while

third model is more similar to the results from our proposed approaches, but still has a

worse fit (in terms of log-likelihood value) than either the NPL or CMLE.
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Figure 21: Effects of audience costs on the U.S. and China dyad, 1991–2000
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Comparative Statics: USA−CHN, 1990

Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given the results
in Table 3Economic sanctions applicationtable.caption.8, Model 4. We then plot equilibrium probability
that the U.S. imposes sanctions conditional on having threatened to do so, pF . The orange diamond denotes
the equilibrium estimated using the CMLE; there is a unique equilibrium for all displayed values of ā.

G Additional Comparative Statics

We analyze additional comparative statics on the U.S.–China–1990 dyad. Figure 21

plots the conditional probability that U.S. fights, pF , as a function of its audience costs.

The U.S. is more likely to fight as its audience cost increase (become more negative). Figure

22 plots the conditional probability that China resists a U.S. threat, pC , as a function of

U.S. audience costs. It shows that China is less likely to resist as the U.S. has larger (more

negative) audience costs. Figure 23 plots the probability that we observe sanctions in

equilibrium as a function of U.S. audience costs. It shows an inverse-U shaped relationship.

When U.S. audience costs are very small (close to zero), sanctions are very unlikely as the

U.S. will back-down at the final decision node. When U.S. audience costs are very large

(very negative), sanctions are less likely as China is likely to concede after observing a U.S.

threat. When audience costs are moderate, not only is the U.S. not likely to back down

but China is also likely to resist threats from the U.S., leading to a higher probability of

sanctions.
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Figure 22: Effects of audience costs on the U.S. and China dyad, 1991–2000
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Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given the results
in Table 3Economic sanctions applicationtable.caption.8, Model 4. We then plot equilibrium probabilities
of resisting conditional on the US challenging, pR. The orange diamond denotes the equilibrium estimated
using the CMLE; there is a unique equilibrium for all displayed values of ā.

Figure 23: Effects of audience costs on the U.S. and China dyad, 1991–2000
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Comparative Statics: USA−CHN, 1990

Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given the results
in Table 3Economic sanctions applicationtable.caption.8, Model 4. We then plot the probability of observing
sanctions in equilibrium, pCpRpF . The orange diamond denotes the equilibrium estimated using the CMLE;
there is a unique equilibrium for all displayed values of ā.
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H Decade-level variables

In this section, we demonstrate that the independent variables we consider the economic

sanctions application experience little variation over the course of each country- or dyad-

decade. For country-level covariates, we only consider polity2 scores for each state. All other

variables are dyadic. In Figure 24, we show that these variables experience little change

over our aggregation periods we plot each variables year-to-year deviation from its decade

mean. For all variables, the mean and median values of these distributions are centered at

zero and there is very little deviation from the spikes at zeros. Overall, we conclude that

the decade-level aggregation for the independent variables is reasonable.

Figure 24: Histograms of within-decade deviations from the mean
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I Robustness checks

I.1 Quarterly Data

Table 6 considers the results of the PL, NPL, and CMLE when we aggregate our depen-

dent variable at the quarterly rather than monthly level. Here xd continues to be dyadic-

covariates aggregated to the decade level, and yd continues to reflect the distribution over

outcomes over each decade. The only difference is that the outcomes are now measured

every at quarter year intervals. This check ensures that our audience cost results are not

driven by either having too many status quo outcomes or by ignoring situations where an

episode lasts multiple months.

Table 6: Economic sanctions application – Quarterly Play

PL NPL CMLE
Model 7 Model 8 Model 9

ā: Const. −2.23∗ −2.23∗ −2.32∗

(0.10) (0.16) (0.11)
ā: DemA 0.00 0.03 0.01

(0.08) (0.10) (0.04)

Log L -3208.86 -3180.23 -3177.05
D × T 418× 40 418× 40 418× 40

Notes: ∗p < 0.05

Standard Errors in Parenthesis

I.2 Relaxing political relevance

Table 7 considers the results of PL and NPL estimation on a larger sample. The CMLE

struggled to converge here and is omitted. This sample uses a more relaxed definition of

political relevance to better match WMK. Here, any dyad-decade is included so long as a

sanctions threat exists in any of the three dyad decades considered in the data. We focus

on just the audience cost parameters, as they represent our substantive interest.

I.3 Different levels of aggregation

In this section, we consider how our main results change with different levels of aggre-

gation. Recall that in our main analysis we follow Whang, McLean and Kuberski (2013)

and consider decade-level data. In that data, a single observation d is a set of decade-level

covariates xd and a distribution over outcomes yd that describe 120 months of interaction.

We now try different levels of aggregation to ensure that our audience cost results are not

driven by these aggregation choices. As before, the coefficients of the non-audience cost

parameters are suppressed for space.
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Table 7: PL and NPL estimates with WMK’s definition of Politically Relevant

PL NPL
Model 10 Model 11

ā: Const. −2.86∗ −2.89∗

(0.09) (0.11)
ā: DemA 0.01 0.02

(0.02) (0.04)

Log L -4582.57 -4425.01
D × T 1012× 120 1012× 120

Notes: ∗p < 0.05

Standard Errors in Parenthesis

Table 8 considers the results of the PL, NPL, and CMLE when the variables are aggre-

gated to the 5 year marks. Here, each observation d is a set of five-year-level covariates xd

and yd now describes the distribution of outcomes over T = 60 months of interaction. In

terms of sign, significance, and general magnitude the results hold.

Table 8: Economic sanctions application: Dyad-5 years

PL NPL CMLE
Model 12 Model 13 Model 14

ā: Const. −2.43∗ −2.44∗ −2.48∗

(0.15) (0.17) (0.08)
ā: DemA −0.02 −0.01 −0.04

(0.10) (0.08) (0.04)

Log L -3624.33 -3608.93 -3606.40
D × T 479× 60 479× 60 479× 60

Notes: ∗p < 0.05

Standard Errors in Parenthesis

The next situation we consider it in Table 9, where we aggregate to the dyad-year

level. Here, each observation d is a set of year-level covariates xd and yd now describes the

distribution of outcomes over T = 12 months of interaction. In terms of sign, significance,

and general magnitude the results hold.

As an additional check we also consider a more ordinary dyad-year analysis in Table 10.

Here, each observation d is once again aggregated to the dyad-year-level, but now we assume

that there is only a single play of the game within each year (T = 1). This means that

yd now describes just a single discrete outcome, rather than a distribution over observed

outcomes within the aggregation period. This analysis requires us to use the expanded

definition of political relevance from Appendix I.2 and does not allow for using the CMLE.

Additionally, reducing yd to just record a single event per year introduced what appears to

be separation bias in the estimates related to VA. To avoid any numerical issues, we drop
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Table 9: Economic sanctions application: Dyad-year (T = 12)

PL NPL CMLE
Model 15 Model 16 Model 17

ā: Const. −1.89∗ −1.90∗ −1.88∗

(0.41) (0.39) (0.09)
ā: DemA −0.03 −0.03 −0.02

(0.31) (0.22) (0.04)

Log L -2712.91 -2717.31 -2715.36
D × T 577× 12 577× 12 577× 12

Notes: ∗p < 0.05

Standard Errors in Parenthesis

Table 10: Economic sanctions application – Dyad-year (T=1)

PL NPL
Model 18 Model 19

ā: Const. −1.97∗ −1.78∗

(0.10) (0.32)
ā: DemA 0.10 0.09

(0.11) (0.27)

Log L -2648.23 -2388.09
D × T 9651× 1 9651× 1

Notes: ∗p < 0.05

Bootstrapped standard errors in parenthesis

the offending estimates and bootstrap the standard errors for this robustness check. As

before, the coefficients on audience costs are effectively unchanged.
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J R code

Below we list the basic code required to implement the tML, PL, and NPL. The PL

and NPL are also available in the R package sigInt. The complete code used to replicate

this entire paper can be found in the replication archive.

 ## This file contains code for the EQ constraint in Jo (2011).

 ## It also includes functions for generating data and functions

 ## necessary to implement the PL and NPL estimators.

 ## Additional packages: pbivnorm, rootSolve, maxLik

 ## NOT INCLUDED: gradients and standard errors.

 ## These can be found in the replication archive.



 ################## HELPER FUNCTIONS ##################

 vec2U.regr <- function(x,regr){

 ## Function for converting parameters and regressors to

 ## utilities over outcomes

 ## INPUTS:

 ## x: vector of regression parameters (betas) in the order SA, VA, CB, barWA, barWB,

bara, VB

 ## regr: a list of regressor matrices, one for each utility in the same order as x

 ## OUTPUTS:

 ## param: A list of utilities in the same order as regr.

 ## Each element of this list is a vector of length equal

 ## to the number of games.





 ## create indices to appropriately sort the elements of x

 ## into the correct outcomes.

 idx0 <- lapply(regr, ncol)

 idx0 <- sapply(idx0, function(x){if(is.null(x)){0}else{x}})

 idx1 <- cumsum(idx0)

 idx0 <- idx1-idx0+1

 idx <- rbind(idx0, idx1)

 idx[,apply(idx, 2, function(x){x[1]>x[2]})] <- 0

 idx[,apply(idx, 2, function(x){x[1]==x[2]})] <- rbind(0,idx[1,apply(idx, 2, function(x){

x[1]==x[2]})] )



 indx <- list(idx[1,1]:idx[2,1],

 idx[1,2]:idx[2,2],

 idx[1,3]:idx[2,3],

 idx[1,4]:idx[2,4],

 idx[1,5]:idx[2,5],

 idx[1,6]:idx[2,6],

 idx[1,7]:idx[2,7])

 indx <- lapply(indx,

 function(x){

 if(0 %in% x){

 return(x[length(x)])

 }else{

 return(x)

 }

 }

 )





 ## Create the utilities using simple X * beta

 param <- list(barWA = regr[[4]] %*% x[indx[[4]]],
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 barWB = regr[[5]] %*% x[indx[[5]]],

 bara = regr[[6]] %*% x[indx[[6]]],

 VA = regr[[2]] %*% x[indx[[2]]],

 VB = regr[[7]] %*% x[indx[[7]]],

 SA = regr[[1]] %*% x[indx[[1]]],

 CB = regr[[3]] %*% x[indx[[3]]],

 sig = 1)

 param <- lapply(param, as.numeric)

 return(param)

 }



 ## Functions from Jo (2011)

 cStar.jo <- function(p, U){

 ## returns c*, a value that appears frequently

 ## p are the equilibrium probabilities p_R

 return((U$SA - (1-p)*U$VA)/p)

 }





 g.jo <- function(c,U){

 ## returns p_C for a given value of c (from cStar.jo, above) and U

 v1 <- (c-U$barWA)/U$sig

 v2 <- (c-U$bara)/U$sig

 return(1 - pnorm(v1)*pnorm(v2))

 }





 h.jo <- function(c, U){

 ## returns p_F for a given value of c (from cStar.jo, above) and U

 d1 <- (U$barWA - U$bara)/(U$sig*sqrt(2))

 d2 <- (U$barWA - c)/(U$sig)

 return(pbivnorm(d1, d2,rho=1/sqrt(2)))

 }



 f.jo <- function(p, U){

 ## returns p_R for a given value of p_F (from h.jo, above) and U

 return(pnorm((p*U$barWB + (1-p)*U$VB - U$CB)/(U$sig*p)))

 }



 const.jo <- function(p, U){

 ## Function to compute the equilibirum constraint p_R - f(h(p_R)

 c <- cStar.jo(p,U)

 g <- g.jo(c,U)

 g[g<=.Machine$double.eps] <- .Machine$double.eps ##numeric stability

 j <- h.jo(c,U)/g

 return(p - f.jo(j,U))

 }





 eqProbs <- function(p, U,RemoveZeros=F){

 ## This function generates p_C and p_F from equilibrium

 ## probability p_R

 ## INPUTS:

 ## p: p_R (the equilibrium)

 ## U: Utilities (from vec2U.regr, above)

 ## RemoveZeros: Boolean, should the function check for numeric issues?

 ## OUTPUTS: A matrix of M by 3 (M is the number of games)



 ck <- cStar.jo(p,U)
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 pC <- g.jo(ck, U)

 if (RemoveZeros){

 pC[pC <= .Machine$double.eps] <- .Machine$double.eps

 }

 pF <- h.jo(ck, U)/pC

 return(cbind(p, pC, pF))

 }



 ################## Objective functions ##################



 QLL.jo <- function(x,PRhat,PFhat,Y,regr){

 ## Pseudo-log-likelihood for two step method

 ## INPUTS:

 ## x: vector of current parameter guesses in order (beta,p)

 ## PRhat: First stage estimates of p_R

 ## PFhat: First stage estimates of p_F

 ## Y: 4 by M matrix of tabulated outcomes

 ## regr: list of regressors for each utility function

 ## OUTPUTS:

 ## QLL: negative of the PLL for this set of parameters



 U <- vec2U.regr(x,regr)

 PR <- f.jo(PFhat, U)

 PR[PR<=.Machine$double.eps] <- .Machine$double.eps

 PC <- g.jo(cStar.jo(PRhat,U),U)

 PC[PC<=.Machine$double.eps] <- .Machine$double.eps

 PF <- h.jo(cStar.jo(PRhat,U),U)/PC



 OUT <- cbind(1-PC,

 PC*(1-PR),

 PC*PR*PF,

 PC*PR*(1-PF))

 OUT[OUT<=sqrt(.Machine$double.eps)] <- sqrt(.Machine$double.eps)

 QLL <- sum(log(t(OUT))*Y)

 return(-QLL)

 }





 LL.nfxp <- function(x, Y,regr){

 ## Log-likelihood function for the Nested Fixed Point

 ## INPUTS:

 ## x: vector of current parameter guesses in order (beta,p)

 ## Y: 4 by M matrix of tabulated outcomes

 ## regr: list of regressors for each utility function

 ## OUTPUTS:

 ## LL: negative of the log-likelihood for this set of parameters



 M <- dim(Y)[2]

 U <- vec2U.regr(x,regr)



 ## compute AN equlibrium

 f <- function(p){const.jo(p,U)}

 grf <- function(p){diag(1-eval_gr_fh(p,U))}

 out <- multiroot(f, rep(.5, M), jacfunc=grf, jactype="fullusr",

 ctol=1e-6,rtol=1e-6,atol=1e-6)



 EQ <- eqProbs(out$root,U)

 OUT <- cbind(1-EQ[,2],

 EQ[,2]*(1-EQ[,1]),
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 EQ[,2]*EQ[,1]*EQ[,3],

 EQ[,2]*EQ[,1]*(1-EQ[,3]))

 OUT[OUT<=sqrt(.Machine$double.eps)] <- sqrt(.Machine$double.eps)

 LL <- sum(log(t(OUT))*Y)

 return(-LL)

 }



 npl <- function(pl.hat, Phat, Y, regr, maxit=500, tol=1e-5){

 ## Estimates the NPL model starting at PL estimates.

 ## INPUTS:

 ## pl.hat: vector of beta estimates from the PL model

 ## Phat: length 2 list of first stage estimates, PRhat and PFhat

 ## Y: 4 by M matrix of tabulated outcomes

 ## regr: list of regressors for each utility function

 ## maxit: Maximum number of iterations

 ## tol: User specified step tolerance for (beta, pR, pF)

 ## OUTPUTS:

 ## npl.out: List containing

 ## - NPL estimates (beta)

 ## - Final best response update of pR

 ## - Final best response update of pF

 ## - Convergence code

 ## + 1: Gradient close to zero at final inner step

 ## + 2: Step tolerance statisfied at final inner step

 ## + -69: Maximum out iterations exceded

 ## + -99: Other error

 ## - Number of outer iterations



 #Setup

 eval <- Inf

 iter <- 0

 out.NPL <- list(estimate = pl.hat)

 fqll <- function(x){ #PL likelihood

 -QLL.jo(x, Phat$PRhat, Phat$PFhat, Y, regr)

 }

 gr.qll <- function(x){ #PL gradient

 -eval_gr_qll(x, Phat$PRhat, Phat$PFhat, Y, regr)

 }

 while(eval > tol & iter < maxit){

 Uk <- vec2U.regr(out.NPL$estimate, regr)

 Pk.F <- eqProbs(Phat$PRhat, Uk, RemoveZeros = T)[,3]

 Pk.R <- pnorm((Phat$PFhat*Uk$barWB + (1-Phat$PFhat)*Uk$VB - Uk$CB)/Phat$PFhat)

 Phat.k_1 <- Phat

 Phat <- list(PRhat = Pk.R, PFhat = Pk.F)



 #normalize

 Phat$PRhat <- pmin(pmax(Phat$PRhat, 0.0001), .9999)

 Phat$PFhat <- pmin(pmax(Phat$PFhat, 0.0001), .9999)



 out.NPL.k <- try(maxLik(start=out.NPL$estimate, logLik=fqll, grad=gr.qll, method="NR

"))

 if(class(out.NPL.k[[1]])=="character" || out.NPL.k$code==100){ #maxLik failure

 out.NPL <- out.NPL.k

 break

 }

 out.NPL.k$convergence <- out.NPL.k$code

 eval <- mean((c(out.NPL.k$estimate, unlist(Phat)) -c(out.NPL$estimate,unlist(Phat.k

_1)))^2)

 out.NPL <- out.NPL.k
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 iter <- iter + 1

 }

 if(class(out.NPL[[1]])=="character"|| out.NPL.k$code==100){ #if there was a failure

 out.NPL$estimate <- rep(NA, 6)

 out.NPL$convergence <- -99

 out.NPL$iter <- -99

 }else{

 out.NPL$convergence <- ifelse(iter==maxit, -69, out.NPL$convergence)

 out.NPL$convergence <- ifelse(eval==0, -99, out.NPL$convergence)

 }

 npl.out <- list(par = out.NPL$estimate,

 PRhat = Phat$PRhat,

 PFhat = Phat$PFhat,

 convergence = out.NPL$convergence,

 iter = out.NPL$iter)

 return(npl.out)

 }
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