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Abstract
Mowing the grass is a cyclical pattern in counterterrorism campaigns where governments attack to

destroy terrorist capacity, thereby achieving a period of quiet as groups recover. If groups expect

their capacity to be destroyed, why build their capabilities in the first place? I analyze an infinite-

horizon dynamic game where a group endogenously builds capacity in the face of potential attacks

and capacity is an evolving, persistent variable. The model highlights that terrorist groups and gov-

ernments have incentives to create strategic uncertainty and thus explains attack cycles without

punishment strategies, revenge preferences or imperfect/incomplete information. I calibrate the

model to time-series data in the Israeli–Palestinian conflict describing rockets fired from Gaza.

The results illustrate a peace-making dilemma: altering the government’s incentives will have com-

paratively minimal effects on long-term conflict dynamics, whereas changing the terrorists’ incen-

tives to acquire capacity would either increase the frequency of high-capacity terrorism or

government attacks.
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1. Introduction

Mowing the grass refers to a cyclical pattern in counterterrorism campaigns: the terrorist
group builds its capacity for violence, and once it becomes too strong, the government
attacks to destroy this capacity. Eventually the group rebuilds, and the process repeats.
The phrase is associated with the Israeli-Palestinian conflict after the Israeli Defense
Force (IDF) launched Operation Protective Edge, a military incursion into the Gaza
Strip aimed at stopping Hamas rocket fire into Israel (Inbar and Shamir, 2014). The
pattern also appears more broadly. The Obama and Trump administrations used the
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phrase to describe U.S. operations against terrorist organizations in Africa and Asia
(Snow, 2019; Bowden, 2021).

When both the government and the terrorist group comprehend each other’s behavior
and the larger fundamentals of conflict, mowing the grass highlights a strategic tension. If
terrorist groups anticipate the attacks that would arise if they increase their capacity, why
build up capabilities that will only be destroyed? In contrast, mowing the grass is suppose
to be a cost-effective counterterrorism strategy, where government attacks generate a
period of extended peace. If the government anticipates that the group will immediately
rebuild, why continue to attack when it means exerting costly effort to attack again?

In this article, I study this strategic environment using a dynamic game with endogen-
ous group capacity. The game has three key features that are essential to the
mowing-the-grass metaphor. First, when the terrorist group invests resources to increase
its capacity, the government observes the resulting investment before it decides to attack.
That is, the mower can watch the grass grow. Second, capacity is persistent in the sense
that once the group acquires capacity, it persists until the government takes costly action
to destroy it. That is, the grass does not mow itself. Third, the interaction has an infinite
horizon. That is, the grass at least has the opportunity to regrow.

This stylized model elucidates the dynamic tradeoffs underlying mowing the grass.
When costs are large enough such that the actors cannot commit to attack or invest in
every period, the government only attacks if it expects the group to not immediately
rebuild. Likewise, the group only builds its organizational capabilities if it expects the
government to not respond immediately with attacks. Thus, the group’s dynamic benefits
of acquiring capacity intimately depend on its expectations about the frequency of gov-
ernment attacks, and the government’s dynamic benefits of attacking depend on its
expectation about how quickly the group rebuilds. As such, multiple equilibria exist.
In the deterrence equilibrium, the group never invests in its capacity, and the government
always attacks groups with high capacity. In the rampant-terrorism equilibrium, the group
always invests and the government never attacks. In the mowing-the-grass equilibrium,
the group randomizes its investment decision and the government randomizes its
attack decision.

The mowing-the-grass equilibrium, therefore, rationalizes cycles of government
attacks and the evolution of terrorist capacity over time. It emerges under relatively
stark conditions that do not require punishment strategies, incomplete or imperfect infor-
mation, revenge preferences, or exogenous stochastic forces, which are other explana-
tions for the patterns. It also produces novel comparative statics. In equilibrium, the
government attacks high-capacity groups with probability that makes low-capacity
groups indifferent between building capacity and not. When the cost of building capacity
increases, the government’s equilibrium probability of attacking decreases thereby
increasing the dynamic benefits of acquiring capacity and compensating the group for
its larger investment costs. Thus, higher investment costs increase the long-term probabil-
ity of high-capacity terrorism and increase the time between government attacks. For
similar reasons, as the government’s cost of attacking increases, the terrorist group’s equi-
librium probability of investing in its capacity decreases, which leads to less high-
capacity terrorism and longer times between government attacks.
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To quantify these relationships, I calibrate the model using data on Palestinian rockets
fired from the Gaza Strip, a motivation behind several IDF operations. A major difficulty
is that the relevant actions and group capacity levels are difficult to measure directly. For
example, raw levels of terrorism cannot directly measure capacity building because they
conflate the terrorists’ decision to build and government’s decision to destroy capacity,
and both decisions may involve the actors mixing. Instead, I assume terrorist capacity
imperfectly, albeit positively, correlates with observed levels of violence. As discussed
below, such an assumption is consistent with well-studied models in the terrorism litera-
ture (e.g., Dragu, 2017; Di Lonardo and Dragu, 2021). With this assumption, the vari-
ation in rocket attacks over time identifies how latent capacity transitions between high
and low states as in a hidden Markov model, even though the capacity level in any
given period is unobserved in the data. As the theoretical model structures how the equi-
librium strategies influence these transitions, I back out the endogenous equilibrium
quantities from the data.

Specifically, I estimate that the expected time between government attacks is 18.8
months and the long-term probability of high-capacity rocket attacks is 0.93, roughly
matching the qualitative account by Rubin (2011) who argues that the effects of govern-
ment attacks on rocket-firing capacity are short lived. The empirical analysis also indi-
cates that mowing the grass best explains the dynamics of rocket firings among the
model’s three equilibria. These first two results illustrate that the model and the selected
mowing-the-grass equilibrium are useful to understand real-world conflict dynamics.
Further assuming the mowing the grass equilibrium generates the data allows me to
conduct explicit counterfactual exercises. I find that equilibrium behavior is relatively
unresponsive to local changes in the government’s incentives. In contrast, a 10% decrease
in the costs of acquiring rocket-firing capacity would decrease the long-term probability
of high-capacity groups by 1%–3% but would also increase rate of government attacks
between 10%–30%. The exercise reveals a peace-making dilemma: small policy
changes affecting local incentives in the calibrated model will not substantially decrease
violence by both actors.

Finally, I explore the robustness of mowing the grass. Although the baseline model
has only two possible capacity levels—which is the simplest setup to explicate how stra-
tegic uncertainty emerges—the dynamic still arises when capacity levels are more finely
grained. I also show that mowing the grass arises even when attacks eliminate the group
with positive probability, capacity depreciates for reasons besides attacks, or the group
can conceal its investment decisions. What is key is that interaction unfolds with an infin-
ite horizon.

Besides identifying the dynamic tradeoffs underlying mowing the grass, this paper
also contributes to the wider conflict literature. First, I provide a dynamic foundation
for empirical work highlighting the importance of strategic uncertainty in the interactions
between governments and insurgent groups. Jaeger and Paserman (2008: 1602) analyze
the timing of Palestinian violence against Israelis and find that groups act in ‘deliberately
unpredictable way[s]’. They argue that ‘given Israel’s intelligence capabilities … it is
probably optimal for the Palestinians to randomize’ (p. 1602). Sonin and Wright
(2020) describe a similar phenomenon in the Afghanistan context. In counterinsurgen-
cies, Lyall (2009: 343) describes how Russian forces in the Chechen war use ‘barrages
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at random intervals and of varying duration on random days without evidence of enemy
movement’. While strategic uncertainty in conflict is often explained using imperfect
information and the cat-and-mouse incentives in the Colonel Blotto game (e.g.,
Roberson, 2006; Sonin and Wright, 2020), I demonstrate these conditions are not neces-
sary. Here, the novel ingredient is endogenous insurgent capacity that persists until the
government uses decisive action to destroy it.

Second, previous work highlights that electoral competition warps the government’s
incentives to fight terrorists, resulting in suboptimal counterterrorism provisions
(Dragu and Polborn, 2014; Di Lonardo, 2019; Bueno de Mesquita, 2007; Dragu,
2017). Majoritarian electoral institutions encourage the formation of terrorist groups
(Aksoy and Carter, 2014), and elections can create political violence cycles
(Crisman-Cox, 2018; Berrebi and Klor, 2006; Nanes, 2017; Aksoy, 2018). In contrast,
mowing the grass reveals a more benign avenue through which electoral competition
influences conflict. If the competition decreases the government’s discount factor
because the politician currently in power is likely to be removed from office, then the fre-
quency of high-capacity terrorism will decrease and the time between government attacks
will increase. When the government’s discount factor decreases, it does not fully intern-
alize the dynamic benefits of attacking. So in the mowing-the-grass equilibrium, the ter-
rorists’ propensity to build capacity decreases, leading to less capable terrorists and
government attacks in the long run.

Third, although there is a rich history of connecting models of terrorism to data, the
connection is generally limited to using reduced-form regressions to test theoretical
implications (e.g., Aksoy, 2018; Nanes, 2017) or using case studies to trace theoretical
mechanisms (e.g., Schram, 2022; Spaniel, 2019; Berrebi and Klor, 2006). In contrast,
this article illustrates the benefits of model calibration. Theoretically, it quantifies com-
parative statics in the version of the model most closely tethered to data. Empirically,
the model helps to identify the government’s and terrorist group’s equilibrium strategies
using time-series data on rocket firings even though capacity building and government
attacks are not measured explicitly. In doing so, equilibrium mixing probabilities micro-
found the transition parameters of a hidden Markov process, which are often left as a
black box in other work using these models to study terrorism (Raghavan et al., 2013;
Blackwell, 2018).

1.1. Related Work
Other theoretical accounts help to explain cycles of government attacks, but their
mechanisms require a combination of incomplete information, punishment strategies,
revenge dynamics, or asymmetrically patient actors. Padró i Miquel and Yared (2012)
analyze a repeated principal-agent model with imperfect monitoring in which govern-
ment attacks punish the group for poor performance. Attacks cycle in equilibrium
because the government cannot not directly observe the group’s actions but cannot
commit to attack in all future periods. Jacobson and Kaplan (2007) study a finite-horizon
model with perfect information where government attacks today increase terrorist
payoffs tomorrow ‘via the recruitment of revenge seeking individuals to terror
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organizations’ (p. 773). Cycles can emerge when the terrorists are asymmetrically impa-
tient and do not fully internalize the dynamic revenge benefits of government attacks.

While the analysis below incorporates some features of these models, I depart from
their assumptions in important ways. Like Padró i Miquel and Yared (2012), the govern-
ment is unable to commit to attack in every period, but unlike their work, attacks can
cycle even without incomplete information or history-dependent strategies.1 The
results thus help to explain the dynamics of counterinsurgencies when the government
has considerable intelligence gathering capabilities or when actors cannot communicate
about or coordinate on intricate punishment strategies.2 Like Jacobson and Kaplan
(2007), the interaction is sequential with perfect information, but unlike their work
cycles still emerge in this model even with equally patient actors and in the absence of
revenge dynamics. In fact, as either actor becomes more patient, the range of parameters
supporting mowing the grass expands.

This article also relates to those studying endogenous insurgent capacity in dynamic
environments.3 Hausken and Zhuang (2011) conceptualize capacity as a fixed set of
resources that can grow over time if invested. Thus, terrorists face a tradeoff between
using the resources today or investing them for greater resources tomorrow. Gibilisco
(2021) models a secessionist group’s capacity as a function of previous repression by
the government where repression feeds resentment tomorrow, thereby increasing cap-
acity. They find that governments may randomize between repression and the granting
of independence, and this randomization is part of a cycle of repression and mobilization.
In the context of interstate wars, Schram (2021) shows that falling powers may ‘hassle’
rising powers by using low-level military actions to slow the rising powers’ accumulation
of military capacity, thereby solving potential commitment problems arising from power
shifts.

2. Model

The model is a dynamic game between a government, G, and a terrorist group, T . The
actors compete over a countably infinite number of periods indexed by t ∈ N. Period t
is characterized by an initial level of capacity, ct ∈ {0, 1}, where ct = 0 represents a
period, where the group begins with low capacity and ct = 1 a period with high capacity.
In the model, capacity represents the persistent resources that the group uses to carry out
attacks. For example, a group with high capacity could be one with highly trained fol-
lowers or a steady access to weapons whereas a low-capacity group has poorly trained
followers or intermittent access to weapons.

Given initial capacity ct, the interaction within each period t proceeds as follows.

1. Both actors observe the current level of group capacity.
2. The terrorist group chooses whether to invest in its capacity (atT = 1) or not

(atT = 0).4

3. The capacity of the group is updated based on the action chosen, where ct =
max {ct, atT} is the group’s interim capacity after the investment decision.
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4. The government observes ct and decides whether to attack the group (atG = 1) or
not (atG = 0).

5. Final capacity is (1− atG)c
t, and payoffs are accrued.

Given interim capacity ct and an action profile at = (atT , a
t
G), the group’s per-period

utility is

uT (a
t, ct) = (1− atG)c

t − atTκT . (1)

In equation (1), (1− atG)c
t corresponds to the group’s benefits from the final capacity level

in period t, the value of which is normalized to one. These benefits capture the relative like-
lihood of successfully committing violence or achieving another goal, which becomes more
likely with high capacity.5 The value atTκT represents the upfront costs terrorists pay when
investing in capacity, where the group pays cost κT > 0 to build capacity, reflecting the dif-
ficulties in building and training their ranks or digging tunnels to smuggle weapons.

The government’s utility function takes a similar form:

uG(a
t, ct) = 1− (1− atG)c

t − atGκG. (2)

In equation (2), 1− (1− atG)c
t represents the government’s benefits of ensuring that the

group has low capacity, which are normalized to 1. These benefits capture the decreased
likelihood that the group successfully commits violence or accomplishes a different goal
with low capacity. The value atGκG represents the costs of attacking, where an attack costs
κG > 0.6

Between periods t and t + 1, group capacity has the following law of motion:

ct+1 = (1− atG)c
t = (1− atG) max {ct, atT}. (3)

Equation (3) says that if the group finished period t with high (low) capacity, then its
initial capacity is high (low) in period t + 1. That is, the group’s capacity is persistent:
once the group builds its capacity, the investment persists until the government destroys
it.7

Given a sequence of actions and capacities {at, ct}∞t=1, actor i’s payoffs are the dis-
counted sum of per-period utilities,

∑∞
t=1 δ

t−1
i ui(at, ct) where δi ∈ (0, 1) is the discount

factor of i = G, T .
Throughout I maintain two substantively motivated restrictions on the parameter

space; the strategic interaction is trivial without them.

Assumption 1 Costs are not overwhelming large: κi < 1
1−δi

for i = G, T .

Assumption 1 says that the group prefers to acquire capacity if it knew its capacity would
remain high in all future periods. Likewise the government would attack if it expects the
group’s capacity to remain low. The next assumption imposes a lower bound on the costs
of attacking for the government.

Assumption 2 The government’s cost of attacking is consequential: κG > 1.
Assumption 2 says the government does not have trivially small costs so that attack-
ing in every period guarantees a positive per-period payoff. Notice that the
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assumption does not impose a similar restriction on the group’s cost, which can be
arbitrarily close to zero.

I focus on stationary and Markovian behavior. Not only is this standard in dynamic
games, but the mowing-the-grass metaphor suggests that the government conditions its
behavior only on the current capacity level. If the government uses a stationary and
Markovian strategy, then the group’s best response shares those properties as well. For
actor i, a strategy is a function σi : {0, 1} � [0, 1], where σT (c) is the probability that
the group invests with initial capacity c, and σG(c) is the probability that the government
attacks given interim capacity c. A strategy profile is σ = (σT , σG). It is straightforward to
define i’s continuation value, Vσ

i (c), and i’s expected utilities over actions, Uσ
T (aT ; c) and

Uσ
G(aG; c)—see Online Appendix A. I focus on Markov Perfect Equilibria, that is,

subgame perfect equilibria in stationary and Markovian strategies, referred to as equilib-
ria hereafter.

Profile σ produces a Markov transition matrix describing the evolution of capacity
between periods t and t + 1:

Mσ ≡
ct = 0

ct = 1

ct+1 = 0 ct+1 = 1
1− σT (0)(1− σG(1)) σT (0)(1− σG(1))

σG(1) 1− σG(1)

⎛
⎝

⎞
⎠

An invariant distribution πσ = (πσ(0), πσ(1)) is a probability distribution over c ∈ {0, 1}
that describes the long-term probability of being at capacity level given profile σ.
Furthermore, πσ is implicitly defined by the equation: πσMσ = πσ . For a profile σ such
that σT (0)+ σG(1) > 0, the long-term probability of high-capacity terrorism is

πσ(1) = σT (0)(1− σG(1))
σT (0)+ σG(1)− σT (0)σG(1)

.

Capacity level c is absorbing if πσ(c) = 1.8

Before proceeding, several remarks are in order. First, higher capacity increases the
group’s and decreases the government’s per-period payoffs. These effects can be micro-
founded using other counterterrorism models (Dragu, 2017; Di Lonardo and Dragu,
2021).9 Instead of adding modeling assumptions to microfound the per-period payoffs,
I focus on the persistent aspect of capacity: high-capacity groups are those that have
made investments that help them carry out violence in the long run, for example, by train-
ing their members or by building tunnels to more easily acquire weapons.10 In contrast,
groups that merely possess resources to carry out missions are not necessarily highly
capable in this framework. Once used, the resources may not be easily replenished. In
later sections, I warp different aspects of capacity’s persistence. In one extension, cap-
acity determines the group’s survival rate where high-capacity groups are more likely
to survive than low-capacity ones. In another, capacity may depreciate for reasons that
are exogenous to government attacks, for example, tunnels used to acquire weapons
cave in.

Second, the government observes interim capacity ct. This explicitly corresponds to
the mowing-the-grass metaphor where the mower sees the grass growing and captures
situations in which governments have strong intelligence capabilities. The latter situation
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is relevant for the empirical application in regards to the IDF (Jacobson and Kaplan,
2007; Jaeger and Paserman, 2008; Rubin, 2011). Theoretically, the assumption departs
from previous work that uses private information to explain cycles of attacks. As men-
tioned above, the analysis therefore explains counterinsurgency dynamics in a wider
array of scenarios. Of course, it could be the case that the group is able to conceal its cap-
acity for a period of time. I explore this in Online Appendix K with unobservable invest-
ment decisions. In this environment with incomplete information mowing the grass
emerges and the direction of the equilibrium comparative statics do not change.

Third, there are two capacity levels. This is the simplest setup needed for the results,
which has two benefits. Not only does it help to explicate why strategic uncertainty can
appear, but also it motivates a straightforward calibration exercise to quantify the model’s
comparative statics. Of course, there could exist more capacity levels. I explore this in an
extension with three capacity levels and demonstrate that mowing the grass and strategic
uncertainty still emerge in this setting. Notably, the government could wait until the
group acquires two levels of capacity before attacking.

Fourth, there is a unique equilibrium in the stage game, and it is in pure strategies. Under
Assumption 2, the government never attacks for any interim capacity level c, and the group
invests if and only if c = 0 and κT < 1. Mowing the grass or strategic uncertainty more gen-
erally is not possible in a one-shot interaction. This conclusion unsurprisingly generalizes
when the two actors interact for any finite number of periods—see Online Appendix
L. Thus, an infinite horizon is a necessary condition for mowing the grass or other non-
trivial dynamics to emerge in this perfect-information framework.

3. Equilibria

With high initial capacity, the group’s interim capacity is high regardless of its investment
decision. Likewise, with low-interim capacity, capacity will remain low at the end of
period, regardless of the government’s attack decision. Because attacking and investing
are costly, the group and the government avoid the actions with high initial capacity and
low-interim capacity, respectively.

Lemma 1. In every equilibrium σ, the terrorists do not invest if their capacity is high
(σT (1) = 0), the government does not attack if the group’s capacity is low
(σG(0) = 0), and 0 ≤ Vσ

i (c) ≤ 1
1−δi

for all c ∈ {0, 1} and all actors i = G, T .

The proof of Lemma 1 is straightforward and is omitted. The result implies that, in
equilibrium, we only need to characterize the group’s investment strategy in low-capacity
states, σT (0), and the government’s attack strategy in high-capacity states, σG(1). The
main result demonstrates that strategic uncertainty can be one explanation for the
cycles of violence between a terrorist organization and government.

Proposition 1. Three equilibria exist. Along with Lemma 1, they take following form.

1. Mowing the grass: The government attacks high-capacity terrorists with prob-
ability strictly between zero and one, and low-capacity terrorists invest with
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probability strictly between zero and one, specifically,

σG(1) = 1− κT (1− δT )
1+ δTκT

and σT (0) = 1− κG(1− δG)
κGδG

.

No capacity level is absorbing (0 < πσ(1) < 1).
2. Deterrence: The government always attacks high-capacity terrorists (σG(1) = 1),

and low-capacity terrorists never invest (σT (0) = 0). Low capacity is absorbing
(πσ(0) = 1).

3. Rampant terrorism: The government never attacks high-capacity terrorists
(σG(1) = 0), and low-capacity terrorists always invest (σT (0) = 1). High capacity
is absorbing (πσ(1) = 1).

The key to understanding Proposition 1 is that the future benefits from attacking
or investing are endogenous and depend on equilibrium expectations. The terrorists’
benefits from building capacity depends on the likelihood that the government attacks
high-capacity groups, and the government’s benefits from attacking depends on how fre-
quently low-capacity terrorists build capacity.

This indeterminacy arises from the repeated interaction and generates both the
multiple equilibria and the possibility for nontrivial strategic uncertainty. For the latter,
low-capacity groups randomize to make the government indifferent between attacking
high-capacity groups or not. Likewise, the government attacks high-capacity groups
with probability that makes low-capacity groups indifferent between investing or not.
In this sense, the strategic environment is similar to a game of chicken, where one
actor wants to stand firm (take its costly action) only if it expects the other opponent
not to follow. In this game, however, these incentives are generated via an intertemporal
substitution: taking the costly action to build capacity or attack is only beneficial if the
group or the government does not expect substantial attacks or investment in the
future, respectively. Thus, uncertainty about future behavior sustains the actors’ indiffer-
ence conditions, so mowing the grass, and strategic uncertainty more generally, is not
possible with a finite number of periods.

Proposition 1 also demonstrates that the same conditions generating mowing the grass
are also responsible for multiple equilibria. The model can therefore explain variation in
conflict dynamics across seemingly identical cases via equilibrium selection. This multi-
plicity thwarts efforts to leverage cross-sectional variation when studying the relationship
between security policies or political institutions on observed levels of terrorism. These
threats to inference are particularly acute if the same historical factors determine equilib-
rium selection and the independent variables of interest such as political institutions and
economic development.

In equilibrium σ, i’s long-term expected utility is

Ũi(σ) =
∑
c

πσ(c)Vσ
i (c),

and i prefers equilibrium σ to equilibrium σ′ if Ũi(σ) > Ũi(σ′). The next result states that
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the government and terrorists have intuitive preferences over the three equilibria: mowing
the grass is never the least-preferred equilibrium for either actor, which is one reason it
might be focal.

Proposition 2. The terrorists prefer rampant terrorism to mowing the grass to deterrence.
The government prefers deterrence to mowing the grass to rampant terrorism.

If σD and σR are the deterrence and rampant-terrorism equilibria, respectively, then
ŨT (σD) = ŨG(σR) = 0. In contrast, if σM is the mowing-the-grass equilibrium, then
Ũi(σM) > 0 for both actors i. Comparing across the three equilibria, mowing the grass
maximizes the product of long-term expected utilities, so it is the Nash bargaining solu-
tion, which is another explanation for why actors would coordinate on it.

Finally, other factors may influence mowing-the-grass dynamics, for example, private
information, revenge preferences, punishment strategies, and failed attacks or investment
decisions. The analysis thus far demonstrates that these features are not necessary to generate
cycles of government attacks and evolving group capacity. In isolation they do not neces-
sarily explain the empirical record where terrorist groups and governments behave in delib-
erately unpredictable ways. In Section 6. and the Online Appendix, I explore the robustness
of mowing the grass by considering environments in which capacity may correlate with
group survival, more than two capacity levels are feasible, or the government cannot per-
fectly observe investment decisions. Mowing the grass driven by strategic uncertainty still
emerges in these settings, and the comparative statics in the baseline model are robust.

4. Comparative statics

There are several reasons to prioritize mowing the grass for comparative statics although
multiple equilibria exist. Empirically, it is the only equilibrium that rationalizes cycles of
government attacks and the nontrivial evolution of group capacity. In the deterrence or
rampant terrorism equilibrium in contrast, the government attacks at most once along
the equilibrium path and there exists an absorbing capacity level. Furthermore, in the
model calibration exercise in Section 5, the analysis indicates that mowing the grass is
the relevant equilibrium when explaining changes in Palestinian rocket capacity over
time. This matches other evidence indicating that Palestinian groups deliberately
behave unpredictably (Jaeger and Paserman, 2008, 2009). Theoretically, as described
above, the equilibrium can be interpreted as an outcome in Nash bargaining over what
equilibrium to play. In addition, behavior in the pure-strategy equilibria does not
respond to changes in the underlying parameters. As such, the comparative statics do
not reverse direction by selecting a different equilibrium and hold weakly in all equilibria.
The next result follows from the mixed strategies in Proposition 1.

Proposition 3. In the mowing-the-grass equilibrium, the following hold.

1. The probability that the government attacks high-capacity terrorists is strictly
increasing in the patience of the terrorist group, δT , and strictly decreasing in
the cost of investment, κT .
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2. The probability that low-capacity terrorists invest is strictly increasing in the
patience of the government, δG, and strictly decreasing in the cost of attacking, κG.

To see the intuition behind the result, recall that the government is attacking with prob-
ability that makes a low-capacity group indifferent between investing and not. Thus, if the
upfront cost of investing (κT ) increases, the government’s propensity to attack decreases,
thereby increasing the dynamic benefits of investing and maintaining the group’s indif-
ference. Likewise, if the terrorist group becomes more patient (δT ), then it better interna-
lizes the dynamic benefits of building capacity, which means the government’s
propensity to attack increases, maintaining the terrorists’ indifference between acquiring
capacity and not. Similar mechanisms underlie the comparative statics regarding the ter-
rorists’ propensity to acquire capacity.11 For example, if the government’s upfront cost of
attacking (κG) increases, then the low-capacity group’s probability of investing decreases,
which increases the government’s long-term benefits of attacking thereby maintaining its
indifference condition.

Proposition 3 has implications for the long-run probability of high-capacity terrorism
and the timing of government attacks. Suppose the government attacks in period t, and let
the random variable X denote the number periods until the next attack. So the support of
X is N and x ∈ N corresponds to the event where the government attacks in period t + x.
The probability that the government’s next attack is in period t + x is

Pr(X = x|σ) = σT (0)σG(1)
∑x
k=1

(1− σG(1))
k−1(1− σT (0))

x−k.

The expected number of periods until the next attack is

E[X|σ] =
∑∞
x=1

x Pr(X = x|σ) = σT (0)+ σG(1)− σT (0)σG(1)
σT (0)σG(1)

,

which is strictly decreasing in σT (0) and σG(1). In conjunction with Proposition 3, the
following result follows from the functional forms of E[X|σ] and πσ(1).

Proposition 4. In the mowing-the-grass equilibrium, the following hold.

1. The long-term probability of high-capacity terrorism, πσ(1), is strictly increasing
in δG and κT and strictly decreasing in δT and κG.

2. The expected number of periods between government attacks is strictly increas-
ing in the actors’ costs, κi and strictly decreasing in their patience, δi.

Policymakers often want to decrease the likelihood of high-capacity terrorism and
increase the time between government attacks. Overall Proposition 4 suggests that they
should focus on increasing the government’s costs of attacking and decreasing the gov-
ernment’s discount factor. Doing so will decrease violence by both actors in the long run.
In contrast, changing the groups’ incentives will either increase the frequency of high-
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capacity terrorism or government attacks.12 Thus, policies that tie the hands of the gov-
ernment—for example, sanctions or diplomatic pressure after major attacks—may be
effective at decreasing long-run hostilities.

Furthermore, the result has implications about the effects of elections on the incidence
of terrorism because discount factors may correlate with the frequency of government
turnover. If the government expects to maintain power for the foreseeable future, it is
likely that δG is large, but if the government expects to lose upcoming elections, then
δG may be smaller. Proposition 4 says that the latter condition with frequent turnover
would lead to a lower propensity for high-capacity terrorism and lower frequency of gov-
ernment attacks. Thus, competitive elections may have peace-enhancing effects.

Before proceeding, one potential criticism of selecting mowing the grass for compara-
tive statics relates to the best-response stability of mixed strategies in normal-form games.
Broadly, mixed equilibria in one-shot normal-form games with strategic complementar-
ities are unstable when myopic players learn to best respond to each other during repeated
play (Echenique and Edlin, 2004).13 It is unclear, however, what these results imply for
the model in this article, which is an infinitely repeated game with an endogenous state
variable. Because of the infinite horizon, this type of game can be played in full only
once, so actors cannot look to past, completed games to conjecture about play in upcom-
ing, future games (as in Echenique and Edlin, 2004, for example). Furthermore, because
capacity is an endogenous state variable, after a single period of interaction, actors only
observe or learn about behavior in the relevant state. To see this, suppose the interaction
in period t begins with high capacity (ct = 1). In this period, the government does not
observe the behavior of the group with low capacity, so it is unclear how the government
should learn about the likelihood of weak groups to invest. A symmetric problem arises
for the group when the interaction in period t begins with low capacity (ct = 0) and the
group does not build.

These complications aside, mowing the grass satisfies other types of stability condi-
tions. It is strongly stable in the sense of Doraszelski and Escobar (2010). In words, an
equilibrium is strongly stable if the equilibrium correspondence is locally a continuous
function of exogenous parameters. As a consequence, mowing the grass is essential
and can thus be approximated by equilibria of nearby games. If the use of mixed strat-
egies is still bothersome, Doraszelski and Escobar (2010) show that, generically,
mixed equilibria in discrete dynamic games can be purified with temporary shocks to per-
period payoffs.

5. Rocket fire in the Israeli–Palestinian conflict

I now calibrate the model using data from the Israeli–Palestinian conflict. The exercise
has three goals. First, I show that the estimated equilibrium strategies closely match sty-
lized patterns identified in the empirical literature on the conflict, for example, the persist-
ence of Hamas rocket capacity and the timing between IDF invasions into the Gaza strip.
This gives us additional confidence that the model is a useful tool for understanding real-
world conflict dynamics. Second, the analysis indicates that, among the model’s three
equilibria, mowing the grass best explains the dynamics of rocket firings in the conflict,
which demonstrates that the equilibrium is the relevant one for comparative statics. Third,
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I use the calibrated model to illustrate comparative statics and counterfactual predictions
implied by mowing the grass and certain changes in the group’s investment cost and the
government’s attack cost.

The major difficulty when connecting the model to data is that the actions and capacity
levels are difficult to measure directly. Although major IDF operations against terrorists
groups—especially those involving incursions into the Gaza Strip—are widely documen-
ted, government attacks may involve targeted killings or other clandestine operations. In
addition, raw levels of terrorism cannot be a direct measure of capacity building because
they conflate the terrorists’ decision to build capacity and the government’s decision to
destroy capacity, and both decisions may involve the actors mixing. For example, after
observing a period with low violence, should we infer that the terrorists did not build
or that they acquired capacity which was then destroyed by the government?

To overcome this, I start with the assumption that terrorist capacity positively (and
imperfectly) correlates with observed levels of violence. For example, at the end of
period t, final capacity is (1− atG) max {atT , c

t} = ct+1 in the model, and we observe
some level of violence that has a higher expected value when final capacity is large
than when final capacity is small. Under suitable conditions, the assumption can be
microfounded using a standard model from the literature on terrorism and counterterror-
ism—see Online Appendix B. With this assumption, I estimate how terrorist capacity—
even though it is not directly observed—evolves over time using a hidden Markov model.
Comparing the fitted statistical model to the theoretical model’s implied law of motion,
Mσ , allows me to back out the equilibrium strategies σT (0) and σG(1), thereby providing
estimates of the associated quantities πσ and E[X|σ] as well. Further assuming that the
mowing-the-grass equilibrium generates the data, I then calibrate the costs of attacking
and investing for any discount factors using the mixed strategies in Proposition 1.

More specifically, let ot denote the observed (normalized) level of terrorist violence at
the end of period t, where final capacity is (1− atG) max {atT , c

t} = ct+1. The observation
ot is drawn from one of two distributions:

ot ∼ N mct+1 , s2ct+1

( )
for ct+1 ∈ {0, 1}, (4)

where m0 corresponds to the mean level of violence when terrorists have low final cap-
acity and m1 to the mean level when they have high final capacity. The assumption that
terrorist capacity positively correlates with observed violence implies m1 > m0. Similarly,
sct+1 corresponds to the standard deviation of observed violence when terrorists have cap-

acity ct+1.14 The states evolve according to a Markov transition matrix:

Ma
b ≡

ct = 0

ct = 1

ct+1 = 0 ct+1 = 1
1− a a
b 1− b

⎛
⎝

⎞
⎠ (5)

in which a is the probability of transitioning from state c = 0 to c = 1 and b is the prob-
ability of transitioning from c = 1 to c = 0.

When the state variable (i.e., capacity level) c is unobserved, the statistical model in
equations (4) and (5) describes a standard hidden Markov process, with parameters
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(a, b, m0, s0, m1, s1) that can estimated (Visser and Speekenbrink, 2010).15 Furthermore,
when the unobserved states evolve according to the model, that is,Mσ = Ma

b , b pins down
the government’s equilibrium probability of attacking high-capacity terrorists. Then a

1−b
pins down the low-capacity terrorist’s probability of building capabilities. Thus, the equi-
librium strategies σ can be estimated from observed levels of violence even though the
capacity levels ct are unobserved.

As a measure of observed violence ot, I use the number of rockets fired from the Gaza
Strip from Haushofer et al. (2010). Rockets became an increasingly important tactic of
violence as Hamas has moved away from suicide attacks since the early 2000s, corre-
sponding to their growth in status among Palestinians. These rockets are often home-
made, unguided projectiles that generally have ranges below 20 miles and payloads
below 20 kg. Their fatality rate is low although Zucker and Kaplan (2014) accredit
this to civil defense measures. Their general purpose is to terrorize and disrupt Israeli
life (Rubin, 2011). Getmansky and Zeitzoff (2014) find that these effects are substantial
enough to influence Israeli voting behavior, and Elster (2019) demonstrates that actual
rocket fire affects voting patterns, not the threat of rocket fire. Although other
Palestinian groups, Islamic Jihad in particular, fire rockets, Hamas pioneered their use.
Some evidence indicates that the group is responsible for the majority of rockets fired
(Amnesty International, 2009). The IDF has often used the destruction of Hamas
rocket capacity as a justification for military incursions into Gaza (Rubin, 2011;
Taylor, 2021).

The raw data with the daily number of rockets fired are reported in Online Appendix
E. Because the number of rockets remains low before 2003 (less than 100 in total), I drop
these years from the analysis.16 I also sum the number of rockets fired by month to
account for the time required to rebuild rocket capacity or to launch government
attacks.17 I use the logged values due to skewness in the data. Because other factors
may influence the rate of rocket fire—for example, the IDF pulls out from the Gaza
Strip in 2006—I detrend the data using a quadratic time trend.18 All transformations
are illustrated in Online Appendix E. To estimate parameters (a, b, m0, s0, m1, s1), I
follow Visser and Speekenbrink (2010) who use maximum likelihood estimation via
the EM algorithm.

5.1. Estimates
Table 1 presents the results. The estimates of m0 and m1 reveal that the two states are well
separated, one where the mean is small and close to zero and another with mean that is
large.19 Substantively, the difference implies that terrorists launch about nine times more
rockets in months with high-capacity than in months with low-capacity. In addition, the
number of rockets fired has more variance with high-capacity rather than low-capacity.
The transition probabilities indicate that the government attacks high-capacity terrorists
with probability σG(1) = b = 0.05, but the terrorists acquire capacity with probability
σT (0) = a

1−b = 0.76. This implies that the expected time between government attacks
is 18.8 months and the long-term probability of high-capacity rocket attacks is 0.93.
These numbers roughly match the qualitative account by Rubin (2011) who argues
that IDF attacks only have short-lived effects on Palestinian rocket capacity and
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reports seven named IDF operations targeting rocket capacity, which are spaced 11
months apart on average.

So far, the analysis is agnostic as to which of the three equilibria generate the data.
That is, the estimates of the equilibrium strategies σG(1) and σT (0) (and hence πσ and
E[X|σ]) do not depend on equilibrium selection. Table 1 and the qualitative evidence
by Rubin (2011) suggest that mowing the grass is the relevant equilibrium, however.
Furthermore, in either the deterrent or rampant-terrorism equilibrium, πσ(1) ∈ {0, 1}.
Using a z-test and the delta method for its standard error, the null hypothesis πσ(1) ≥
0.99 implies a p-value of < 0.1. The null hypothesis πσ(1) ≤ 0.01 implies a p-value of
< 0.01. This indicates that the mowing-the-grass equilibrium best matches the data.

Explicitly assuming that mowing the grass is the equilibrium generating the data
implies that the estimates in Table 1 are connected to the attack and investment costs
via the relevant mixing probabilities in Proposition 1. To see this, in the
mowing-the-grass equilibrium the government’s cost of attacking satisfies

κG = (1− δG(1− σT (0)))
−1.

Using σT (0) = a
1−b from Table 1, κG ∈ (1, 1.31) because δ ∈ (0, 1). Similarly, the cost of

building capacity satisfies

κT = 1− σG(1)
1− δT (1− σG(1))

.

Thus, σG(1) = b from Table 1 implies κT ∈ (0.95, 17.55) as δT ∈ (0, 1).

5.2. Counterfactuals
Using the calibrated model, I now illustrate the substantive quantities of interest as func-
tions of cost parameters κG and κT . To do this, I consider two cases where actors are
patient (δi = 0.99) and impatient (δi = 0.80).20 Given the equilibrium strategies esti-
mated in Table 1, patient actors have costs κG = 1.30 and κT = 14.93, whereas impatient
actors have costs κG = 1.23 and κT = 3.89. Notice that the calibrated costs are higher

Table 1. Estimating equilibrium quantities.

Model Correspondence Estimate Standard Error

a σT (1− σG(1)) 0.723 0.251
b σG(1) 0.054 0.036
m0 0.356 0.173
s0 0.287 0.115
m1 2.660 0.110
s1 0.787 0.086

Number of periods 64
Log likelihood −83.922

Note. Standard errors computed from the outer-product of gradients in parentheses.
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when the actors are patient. Given a fixed equilibrium strategy for actor j (calibrated via
Table 1), larger discount factors for actor i correspond to greater dynamic benefits asso-
ciated with i’s costly action (ati = 1), implying larger upfront costs (κi) are required to
maintain i’s indifference condition.

Figure 1 presents the counterfactuals corresponding to changes in the government’s
attack costs. The horizontal axis denotes κG, where the shaded vertical lines highlight
the costs given the estimated equilibrium strategies from Table 1 and the fixed discount
factor δG ∈ {0.8, 0.99}. The cost of attacking varies between its theoretical lower bound
of one and 2.62, which is a 100% increase from the maximum calibrated value. The three
vertical axes represent the substantive quantities of interest: the probability that low-
capacity terrorists build (top), the long-term probability of high-capacity terrorism
(middle), and the expected time between government attacks (bottom). The dashed hori-
zontal lines demarcate the baseline values from the calibrated equilibrium strategies in
Table 1. Table 2 in Online Appendix F reports the corresponding marginal effects.

Notice that trends match the comparative statics in Propositions 3 and 4. When the
government has larger upfront costs from attacking, the terrorists acquire capacity less
frequently, thereby increasing the dynamic benefits of attacking and maintaining the gov-
ernment’s indifference condition. This leads to a lower long-term probability of high-
capacity terrorism and therefore less frequent government attacks. More substantially,
the analysis indicates that changes to the cost of attacking have small peace-enhancing
effects: regardless of the government’s patience, a 10% increase in the cost of attacking,
κG, leads to a 0.1% decrease in the long-term probability of high-capacity terrorism and a
0.1% increase in the time between attacks.

Figure 2 presents the counterfactuals corresponding to the terrorists’ investing cost,
which is the horizontal axis. The shaded vertical lines denote the costs given the estimated
equilibrium strategies from Table 1 and the fixed discount factor δT ∈ {0.8, 0.99}. The
cost of investing varies between its theoretical lower bound of zero and 26, which is a
50% increase from the maximum calibrated value. The three vertical axes represent
the probability that the government attacks high-capacity terrorists (top), the long-term
probability of high-capacity terrorism (middle), and the expected time between govern-
ment attacks (bottom). The dashed horizontal lines demarcate the baseline values in
the calibrated model; the marginal effects are in Table 2 in Online Appendix F.

Notice that when the terrorists are impatient (δT = 0.8), there is a discontinuity in the
predicted values of interest. This discontinuity occurs at κT = 5 = 1

1−δT
. If the terrorists

are impatient and κT > 5, then Assumption 1 does not hold and mowing the grass is
not an equilibrium. In this case, the only equilibrium is deterrence, which means the gov-
ernment attacks high-capacity groups with probability one, low-capacity terrorism is an
absorbing state, and the time between attacks is not defined.

In Figure 2, if the terrorists’ costs of acquiring capacity increases, then the government
attacks less frequently, thereby increasing the group’s dynamic incentives to build cap-
acity. This leads to a greater long-term probability of high-capacity terrorism and a
longer expected time between attacks. Compared to Figure 1, the analysis also reveals
that the substantive quantities of interest are more responsive to changes in the terrorist’s
costs of acquiring capacity, especially with smaller discount factors. With impatient ter-
rorists, a 10% decrease in the cost of investing decreases the long-term probability of
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Figure 1. The effects of the government’s cost of attacking.

Note. Shaded vertical lines denote the calibrated value of κG given patient (δG = 0.99) and

impatient (δG = 0.80) governments using equilibrium estimates from Table 1. The dashed

horizontal lines demarcate the baseline quantities in the calibrated model.
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Figure 2. The effects of the terrorists’ cost of investing.

Note. Shaded vertical lines denote the calibrated value of κT given patient (δT = 0.99) and

impatient (δT = 0.80) terrorists using equilibrium estimates from Table 1. The dashed horizontal

lines demarcate the baseline quantities in the calibrated model. When the terrorists are impatient,

mowing the grass is not an equilibrium for κT > 5 = 1
1−δT

, in which case the only equilibrium is

deterrence.
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high-capacity terrorism by 3% and decreases the expected time between attacks by 31%.
With patient terrorists, the effects are diminished to some degree: an identical decrease in
the cost of investing decreases the probability of high-capacity terrorism by 1% and the
time between attacks by 10%.

Overall, the analysis suggests that policy changes—for example, sanctions after
attacks or increasing the cost of capacity through blockades—affecting the actors’ rela-
tive costs will not substantially decrease both the probability of high-capacity terrorism
and the frequency of government attacks. As shown in Proposition 4, only increases in
κG (or decreases in δG) will simultaneously lower the capacity of terrorism and frequency
of government attacks. The calibrated model indicates these effects are substantively
small, however. In contrast, the equilibrium dynamics are more responsive to changes
in the terrorists’ incentives, but this has a double-edged sword: altering the costs of
acquiring rocket capacity will either increase the long-term probability of terrorism or
decrease the frequency of government attacks. Furthermore, if the goal is to increase
the cost of acquiring capacity so that deterrence is the only equilibrium, the feasibility
of this route depends on the patience of the terrorists. With patient terrorists, even if
costs double, mowing the grass is still an equilibrium.

6. Mowing the grass is robust

6.1. Group survival
Groups with low capacity may cease to exist or may never have the opportunity to
rebuild. Likewise, the government may attack groups with the explicit goal to eradicate
the organization. To capture this, I modify the baseline model. At the end of period t, if
capacity is low, (1− atG)c

t = 0, then the game continues to period t + 1 with probability
q ∈ (0, 1). With probability 1− q, the group ceases to exist, in which case it consumes
χT ≤ 0 in all future periods and the government consumes χG ≥ 1. If capacity is high, that
is, (1− atG)c

t = 1, then the interaction certainly proceeds to period t + 1. Thus, q is the
per-period survival rate of low-capacity terrorists, and q = 1 covers the baseline model.
In addition, χT ≤ 0 accounts for the possibility that group leaders might want to be in
charge of low-capacity groups rather than have the group disband altogether.
Similarly, χG ≥ 1 captures the possibility that the government may receive additional
benefits, for example, enhanced electoral prospects or a reallocation of budgetary
resources, if it eradicates a terrorist organization.

Proposition 5. Mowing the grass is an equilibrium if and only if κG > 1+ (1−q)δGχG
1−δG

.
In the equilibrium, the government attacks high-capacity terrorists with probability

σG(1) = 1+ κT (1− qδT )
−1+ qδT (1+ δTκT − χT )− δT (κT − χT )

and low-capacity terrorists invest with probability

σT (0) = (1− δG)(1− (1− qδG)κG)+ (1− q)δGχG
q(1− δG)δGκG

.
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Furthermore, σG(1) and σT (0) are decreasing in q.

The requirement that κG > 1+ (1−q)δGχG
1−δG

is stronger than Assumption 2; it comes from
the change that the government’s dynamic benefits from attacking could be quite large,
especially if the per-period survival rate of low-capacity terrorists is small and the benefits
of permanently defeating the group is large. Notice that if attacks certainly destroy the
group (q = 0), then the condition reduces to κG > 1+ δGχG

1−δG
. Because χG ≥ 1, this contra-

dicts Assumption 1. In other words, mowing the grass is an equilibrium if and only if the
per-period survival rate of weak groups q is not too small.

To see why a larger per-period survival rate decreases the probability that low-capacity
terrorists acquire capacity, recall that the group mixes to keep the government indifferent
between attacking and not. If the per-period survival of low-capacity groups increases,
then the government’s dynamic benefits from attacking become smaller. To compensate,
low-capacity groups invest less frequently in equilibrium, thereby increasing the dynamic
benefits of attacking.

A similar logic explains the comparative static for the government’s attack probability.
The government is mixing to keep the low-capacity terrorists indifferent between invest-
ing and not. Having high capacity comes with two types of benefits for the terrorists: sur-
vival and higher per-period payoffs. When q increases, low-capacity terrorists have
enhanced survival chances, thereby diminishing the relative survival benefits of high cap-
acity. To maintain indifference in equilibrium, the government attacks less.

6.2. Depreciating capacity
How does capacity’s persistence affect mowing the grass. Terrorist groups might lose their
high capacity due to other factors besides government attacks. To capture this, I modify the
baseline model. At the end of period t if capacity is high, that is, (1− atG)c

t = 1, then it
remains high in the next period (ct+1 = 1) with probability p ∈ (0, 1). Capacity depreciates
in the next period (ct+1 = 0) with complimentary probability 1− p. Thus, p represents the
persistence of group capacity, and the baseline model assumed p = 1. The next result illus-
trates the effects of depreciating capacity on mowing-the-grass dynamics.

Proposition 6. Mowing the grass is an equilibrium if and only if κi < 1
1−δip

for i = G, T .
In the equilibrium, the government attacks high-capacity terrorists with probability

σG(1) = 1− κT (1− pδT )
1+ pδTκT

and low-capacity terrorists invest with probability

σT (0) = 1− κG(1− pδG)
pδGκG

Furthermore, σG(1) and σT (0) are increasing in p.

The persistence of capacity is directly linked to the dynamic benefits of investing and
attacking. When persistence increases, the dynamic benefits of acquiring capacity
increase, and the government attacks with greater probability to maintain the group’s
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indifference between investing and not. Likewise, with greater persistence, capacity is
less likely to disappear in the absence of government attacks, which increases the govern-
ment’s relative benefits from attacking. To ensure that the government is indifferent
between attacking and not, the group builds capacity with greater frequency. Notice
that κi < 1

1−δip
is stronger than Assumption 1. In addition, if the persistence of capacity

goes to zero, this condition boils down to κi < 1, which contradicts Assumption 2. In
other words, mowing the grass is an equilibrium if and only if terrorist capacity is suf-
ficiently persistent.

6.3. Multiple capacity levels
It could be the case that capacity requires more than one period of investment before the
group becomes strong enough to warrant government attacks. That is, groups will need to
repeatedly invest before they have high capacity. To capture this, I assume that there are
three capacity levels, so ct ∈ {0, 1, 2}, representing low, medium and high levels,
respectively. In this version, the timing of the interaction is the same as the baseline
model, but now capacity evolves as follows:

ct = min {ct + atT , 2} and ct+1 = (1− atG)c
t.

Notice that the group can only increase its capacity by one level in period t. In addition,
after the government attacks, capacity is reset to zero, regardless of the level of interim
capacity at the time of the attack.

Per-period utilities take the form:

uT (a
t, ct) = (1− atG)v(c

t)− atTκT
uG(a

t, ct) = 1− (1− atG)v(c
t)− atGκG.

The function v : {0, 1, 2} � [0, 1] relates the capacity levels to terrorism outputs, which
takes the form

v(ct) =
1 if ct = 2
μ if ct = 1
0 if ct = 0

⎧⎨
⎩

where μ ∈ (0, 1) describes the effectiveness of groups with medium capacity. When μ is
close to zero, it essentially takes two periods of investment before the terrorists become
high quality. When μ is close to one, the strategic interaction looks similar to the baseline
model, where the terrorists acquire substantial capacity after one period of investment.

Now a strategy is a function σi : {0, 1, 2} � [0, 1], where σT (c) is the probability that
the group invests given initial capacity c and σG(c) is the probability that the government
attacks given interim capacity c. As in the baseline model, high-capacity terrorists do not
invest and the government does not attack low-capacity terrorists in equilibrium. The next
proposition illustrates that mowing the grass can still emerge even when the terrorists
invest in more than one period to acquire high capacity.
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Proposition 7. If κT < min {μ, 1−μ}
1−δT

and 1+ δG(1− μ) < κG < 1−μδG
1−δG

, then there exists an
equilibrium in partially mixed strategies with the following properties:

• Low-capacity terrorists always invest (σG(0) = 1) and medium-capacity terrorists
invest with probability

σT (1) = 1− (1− δG)κG − δGμ

δG(κG − 1)

• The government never attacks medium-capacity terrorists (σG(1) = 0) and attacks
high-capacity terrorists with probability

σG(2) = 1− μ− (1− δT )κT
1+ 2δTκT

.

Furthermore, σT (1) and σG(2) are decreasing in μ.

The key difference between the dynamics in Proposition 6 and the baseline result is
that the government waits until the group acquires two levels of capacity before attacking.
Of course, the government still randomizes when facing high-capacity terrorists, or else
the group would have no incentive to increase its capacity from medium to high. For the
government to mix at capacity c = 2, the group needs randomize at capacity c = 1. Thus,
the proposition illustrates that strategic uncertainty can still emerge even when the group
requires more than one period to gain enough capacity to warrant an attack.

To see the intuition for the comparative statics, note that, when μ increases, (a) the
dynamic benefits of attacking decrease for the government and (b) the gains from high
capacity relative to medium capacity decrease for the terrorists (v(2)− v(1)). The two
forces make each actor’s costly action less attractive, so the government and the terrorist
group attack and invest less in equilibrium to compensate.

6.4. Government capacity
To this point, I have focused on the group’s capacity, but it could be the case that the
government’s capacity is endogenous. This is particularly relevant when attacking in con-
secutive periods is not feasible due to dynamic resource constraints. For example, after
expending military resources to attack the group, the government may need several
periods to replenish those resources to be able to attack again. To see how these con-
straints may affect mowing the grass, I modify the baseline model as follows. First, let
bt ∈ {0, 1} denote an additional endogenous state variable in the model that represents
whether the government has resources to attack (bt = 1) or not (bt = 0) in period t.
Second, suppose bt evolves as follows

Pr(bt+1 = 1 ∣ bt, atG) =
1 if bt = 1 = 1− atG
β otherwise

{
. (6)

Equation (6) says that, if government attacks are feasible in period t (bt = 1) and it does
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not attack in period t (atG = 0), then attacks will be feasible in period t + 1. If attacks are
not feasible in period t or if the government attacks in period t, then attacks will be feas-
ible in period t + 1 with probability β ∈ (0, 1). Thus, β is the rate at which the govern-
ment’s resources recover after an attack, and the baseline model assumed β = 1.

In this extension, a state is a pair (c, b) ∈ {0, 1} × {0, 1}. Strategies are functions
σi : {0, 1} × {0, 1} � [0, 1], where σT (c, b) is T’s probability of investing given initial
capacity c and government resources b and σG(c, b) is G’s probability of attacking
given interim capacity c and resources b. The government faces a binding budget con-
straint when b = 0, so σG(c, 0) = 0 for all c. As above, high-capacity terrorists do not
invest (σT (1, b) = 0), and the government does not attack low-capacity terrorists in equi-
librium (σG(0, 1) = 0). Thus, an equilibrium needs to pin down three quantities: σT (0, 0),
σT (0, 1) and σG(1, 1). The first two are the probabilities that low-capacity groups invest
when government attacks are infeasible and feasible, respectively. The last is the govern-
ment’s probability of attacking high-capacity groups. In Online Appendix J, I prove the
following result that further reduces the potential mixed-strategy equilibria and the poten-
tial equilibria in which capacity cycles.

Lemma 2. In every equilibrium σ, σT (0, 1) ∈ (0, 1) implies σT (0, 0) = 1, and σT (0, 0) < 1
implies σT (0, 1) = 0. Moreover, in every equilibrium σ such that neither state (0, 1) nor
(1, 1) is absorbing, σT (0, 0) = 1 and σT (0, 1) ∈ (0, 1).

Lemma 2 implies that in equilibria in which attacks and capacities cycle (i.e.,
mowing-the-grass equilibria), low-capacity groups invest with probability strictly
between zero and one when attacks are feasible and surely invest when attacks are infeas-
ible. Thus, the next result characterizes all mowing-the-grass equilibria in this extensions,
that is, equilibria in which σT (0, 1) ∈ (0, 1) and σT (0, 0) = 1.

Proposition 8. Mowing the grass is an equilibrium if and only if κG < 1−(1−β)δG
1−δG

and
κT > (1−β)δT

1−(1−β)δ2T
. In the equilibrium, the government attacks high-capacity terrorists with

probability

σG(1, 1) = (1− (1− β)δT )(1− (1− δT )κT )

1− 2(1− β)δ2TκT + δT (− 2(1− β)+ (2− β)κT )
;

when attacks are feasible, low-capacity terrorists invest with probability

σT (0, 1) = δG(β + κG − 1)− (κG − 1)
δG(β + κG − 1)

;

and when attacks are infeasible, low-capacity terrorists surely invest (σT (0, 0) = 1).
Furthermore σG(1, 1) is strictly decreasing in β, while σT (0, 1) is strictly increasing in β.

Thus, mowing the grass is consistent with the government facing a dynamic budget
constraint where it may not be feasible to attack in two consecutive periods. Notice the
requirements that κG < 1−(1−β)δG

1−δG
and κT > (1−β)δT

1−(1−β)δ2T
are stronger than the baseline

model. When β is quite small, the group has large dynamic incentives to invest, so indif-
ference may not be feasible for the group. Because of this, the government has very small
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dynamic incentives to attack when β is small because the government anticipates the
group will quickly rebuild. This also makes mixed strategies more difficult to sustain.
In other words, mowing the grass is an equilibrium if and only if government resources
replenish sufficiently quickly after an attack. By Lemma 2, the equilibrium in Proposition
8 is the only equilibrium consistent with cycles of capacity and attacks.21 Thus, tight
budget constraints (i.e., β close to 0) are not sufficient to explain cycles of government
attacks.

7. Conclusion

I study a dynamic model of endogenous group capacity to determine under what condi-
tions insurgent groups acquire capacity in the shadow of government attacks. The
dynamic benefits of building capacity for the group depend intimately on its expectation
of future government attacks. Conversely, the government’s dynamic benefits of attack-
ing are tied to how quickly the group rebuilds capacity. With an infinite-horizon, the two
actors may have incentives to randomize their behavior over time, so strategic uncertainty
helps to explain cycles of government attacks, fluctuations in terrorist capacity, and
mowing the grass. Furthermore, the mechanism does not require incomplete or imperfect
information, punishment strategies, revenge preferences, or stochastic shocks.

The analysis also leads to novel substantive implications. First, frequent political turn-
over may dampen long-term hostilities. In the presence of high turnover, government
politicians may not internalize the dynamic benefits of degrading terrorist capacity.
Under mowing-the-grass dynamics, decreases in the government’s patience or discount
factor lead to less high-capacity terrorism and government attacks in the long run.
Second, when I calibrate the model to Palestinian rocket attacks, I find that changes in
the government’s incentives have relatively smaller effects on the frequency of violence
than changes in the terrorists’ incentives. This illustrates a peacemaking dilemma:
changes in the terrorists’ cost of acquiring rocket capacity may result in less high-capacity
terrorism but it would do so at the expense of increasing the frequency of government
attacks.

The analysis also motivates future research in several directions. First, one finding is
that strategic uncertainty can explain conflict dynamics over time. These incentives
appear in other settings, for example, insurgencies, and one possibility is to fully estimate
a model using a case with sufficient data. In light of this, strategic uncertainty may help
rationalize observed violence without the introduction of ad hoc action-specific shocks or
measurement error. Second, I focus the model on the dynamics of counterterrorism policy
and persistent group capacity, but the analysis overlooks more political aspects such as
competition between rival anti-government groups or bargaining with the government.
Future work should explore how these political aspects of violence interact with endogen-
ous group capacity.

Finally, the paper’s motivation and empirical analysis focuses on the cyclical inter-
action between governments and terrorist groups, but the model is more general and
could be applied to other types of asymmetric conflict. The key assumptions are that
(i) the anti-government group can acquire capacity that persists absent government inter-
vention, (ii) the interaction is potentially infinite, and (iii) the government cannot commit
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to use intervention against the group in all interactions. Potential examples include how
governments use targeted killings against criminal organizations (Calderón et al., 2015;
Castillo, 2021), how nationalists repress secessionist groups (Gibilisco, 2021; Lacina,
2014), or how autocrats use covert tactics to suppress opposition movements (Nalepa
and Pop-Eleches, 2022; Dragu and Przeworski, 2019). The empirical section illustrates
that the model’s equilibrium strategies can be estimated even when the actions and
state variable are not directly observed by the analyst, which is particularly important
when studying covert government actions. The major requirement is that there is an indir-
ect measure of group capacity. With such a measure, future work can examine the degree
to which the model explains empirical dynamics in these other asymmetric conflicts using
a similar approach in Section 5.
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Notes

1. Debs and Monteiro (2014) and Bas and Coe (2016) demonstrate how incomplete information and
endogenous military capacity can lead to bargaining break-down and war. Besides their focus on
bargaining with incomplete information, their models also differ from the analysis below because
they include exogenous stochastic elements and because successful increases in military capacity
(representing the acquisition of nuclear weapons) cannot be undone by fighting.

2. I further discuss informational assumptions in the next section. In Online Appendix K, I relax
the perfect information assumption, show that mowing the grass still emerges, and verify that
the model’s comparative statics are robust.
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3. For static environments see Bueno de Mesquita (2005), Di Lonardo and Dragu (2021),
Schram (2022), and Spaniel (2019).

4. I use invest in capacity, build capacity, and acquire capacity interchangeably.
5. Even when the group does not expect military victory or government concessions, terrorism

and other violence boost recruitment, financial resources, public support, and other ‘proximate
goals’ that are essential for the group’s day-to-day operations (Crenshaw, 1981; Acosta, 2014;
Polo and González, 2020).

6. The government’s cost of attacking is independent of the group’s interim capacity ct . This
assumption is inconsequential, however. As shown below, the government never attacks low-
capacity groups in equilibrium, so the results do not change if κG depends on the capacity.
Assumptions 1 and 2 could be restated with respect to the government’s cost of attacking
high-capacity groups.

7. Period 1’s capacity c1 is exogenous. I also consider an extension in which the group loses cap-
acity probabilistically for reasons besides attacks.

8. As demonstrated below, σT (0)+ σG(1) > 0 holds in every equilibrium.
9. See Online Appendix B for an example.
10. Given the restriction to stationary and Markov strategies, the specific value of the initial state

c1 is inconsequential to the equilibrium characterization. As such, the analysis below covers
the case where initial capacity is low, that is, c1 = 0.

11. The comparative statics hold even when the government cannot observe the group’s invest-
ment decisions. See Proposition 9 in Online Appendix K.

12. It is possible to interpret the group’s discount factor δT as a preference parameter invariant to
policy changes. Nonetheless, Castillo and Kronick (2020) and Castillo (2021) argue that tar-
geted killings of group leaders make groups more shortsighted, which would correspond to
decreases in δT here.

13. Mixed equilibria in one-shot normal-form games can have other microfoundations even when
they are not best-response stable. The mixed equilibrium in a game of chicken, for example, is
evolutionary stable and asymptotically stable in a large population (Weibull, 1997).

14. Because the level of violence would generally be bounded below (i.e., no violence recorded), I
expect s1 > s0.

15. To clearly see this, let c̃t ≡ (1− atG)max {atT , c
t} = ct+1 denote final capacity in period t. By

substitution, ot ∼ N (mc̃t , s2c̃t ).
16. Rubin (2011) details how rocket firings during this time were relatively uncommon and unim-

portant to IDF security operations.
17. The calendar month is a standard level of analysis when working with time series data on ter-

rorism (Jaeger and Paserman, 2008, 2009; Jacobson and Kaplan, 2007; Aksoy, 2018)
18. Similar results hold if I detrend using a post-2006 fixed effect.
19. Following conventions, Table 1 reports standard errors, which are computed from a numerical

approximation of the information matrix via first-differences and the outer-product of gradi-
ents. With a relatively small sample and nonlinear likelihood function, their interpretation is
tenuous.

20. A period is a calendar month. For patient actors, a benefit of one in the current period is
worth 0.88 after 12 periods/months. For impatient actors, this delayed benefit is worth
0.07.

21. When σT (0, 1) ∈ (0, 1), and σT (0, 0) = 1, we must have σG(1, 1) ∈ (0, 1) in equilibrium.
That is, the government must mix in state (c, b) = (1, 1) to make the group indifferent in
state (0, 1) because (1, 1) is the only state in which the government can attack with positive
probability in equilibrium.
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A Technical primitives

Let σ(a, c) denote the probability of observing action profile a = (aT , aG) given initial
capacity c and strategy profile σ. Actor i’s continuation value V σ

i takes the recursive form:

V σ
i (c) =

∑
a∈{0,1}2

σ(a, c) [ui(a,max{aT , c}) + δiV
σ
i ((1− aG) max{aT , c})] . (7)

Expected utilities over actions take the following form. For the terrorist group,

UσT (aT ; c) = −aTκT + σG(max{aT , c})δTV σ
T (0) +

(1− σG(max{aT , c})) [max{c, aT }+ δTV
σ
T (max{aT , c})] .

For the government,

UσG(aG; c) = 1− (1− aG)c− aGκG + δGV
σ
G ((1− aG)c).

Using Uσi , it is straightforward to define the equilibrium concept.

Definition 1. Profile σ is a Markov Perfect Equilibrium if the following conditions hold.

1. For all c ∈ {0, 1}, σT (c) > 0 implies UσT (1; c) ≥ UσT (0; c), and σT (c) < 1 implies
UσT (0; c) ≥ UσT (1; c).

i



2. For all c ∈ {0, 1}, σG(c) > 0 implies UσG(1; c) ≥ UσG(0; c), and σG(c) < 1 implies
UσG(0; c) ≥ UσG(1; c).

B Microfoundation of per-period payoffs

In this section, I walk through an example that microfounds the per-period payoffs using
a model similar to those in Dragu (2017) and Di Lonardo and Dragu (2021). The example
illustrates a model in which (i) excluding costs κi, the terrorist group (the government)
has higher (lower) per-period benefits with high group capacity and than with low group
capacity, and (ii) terrorism or violence is more likely when the group has higher capacity
than when the group has lower capacity.

To do this, consider the end of period t. Here, final capacity is (1−atG)ct = ct+1. Suppose
at the end of period t, the government and the group simultaneously choose effort levels
eti ≥ 0 and terrorism or another form of violence (e.g., rocket fire) happens with probability
etT (1 − etG). In words, the group uses effort to commit terrorism and the government uses
effort to stop terrorism. The group receives a benefit of one if and only if terrorism occurs,

and it pays effort cost −2−ct+1

2 (etT )2. Notice that high-capacity groups more easily exert
effort than their low-capacity counterparts. The government receives a reduction of negative
one if and only if terrorism occurs and pays effort cost −1

2(etG)2. Assume that the effort
allocations and the terrorism outcome do not affect the state variable ct. That is, the
interaction in future periods does not depend on the chosen effort levels in period t or
whether or not violence occurred in period t.

With this setup, actor i chooses eti = 1
3−ct+1 . Thus, violence occurs with probability

etT (1− etG) =

(
1

3− ct+1

)(
1− 1

3− ct+1

)
=

2− ct+1

(3− ct+1)2︸ ︷︷ ︸
≡Pct+1

.

As such, terrorism and violence are more likely to occur when the group has high final
capacity than low final capacity, i.e., P1 > P0. At the end of the period when actors are
deciding effort levels, costs κi are sunk. Hence, the group’s expected per-period utility
(excluding costs κT ) is

Pct+1 −
2− ct+1

2

(
1

3− ct+1︸ ︷︷ ︸
=etT

)2

=
2− ct+1

2(3− ct+1)2
,

which is larger when final capacity is high. The government’s expected per-period utility
(excluding costs κG) is

−Pct+1 −
1

2

(
1

3− ct+1︸ ︷︷ ︸
=etG

)2

=
2ct+1 − 5

2(3− ct+1)2
,

which is larger when final capacity is low. The payoff difference between high- and low-
capacity states can be normalized to one for each actor i relative to its costs κi.
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C Proof of Proposition 1

I prove the result in two steps. First, I characterize i’s best response when −i plays a
pure strategy, showing that i’s best response is a pure strategy (Lemmas 3 and 4). Second,
I characterize mixed strategy equilibria (Lemma 5).

Lemma 3. 1. If low-capacity terrorists always invest (σT (0) = 1), then the government
never attacks high-capacity terrorists (σG(1) = 0) in every equilibrium σ.

2. If low-capacity terrorists never invest (σT (0) = 0), then the government always attacks
high-capacity terrorists (σG(1) = 1) in every equilibrium σ.

Proof. To prove (1), consider an equilibrium σ such that σT (0) = 1. We can compute the
government’s expected utility from attacking when capacity is high:

UσG(1; 1) = 1− κG + δGV
σ
G (0)

= 1− κG + δG [σG(1)UσG(1; 1) + (1− σG(1))UσG(0; 1)]

= 1− κG + δGV
σ
G (1)

< 0 + δGV
σ
G (1) = UσG(0; 1),

where the second equality follows from assumption that σT (0) = 1 and the last inequality
follows because κG > 1 by Assumption 2. Because σ is an equilibrium UσG(1; 1) < UσG(0; 1)
implies that the government never attacks, establishing the desired result.

To prove (2), suppose the contrary. Then there exists an equilibrium σ such that
σT (0) = 0 and σG(1) < 1. Because σ is an equilibrium, σG(0) = σT (1) = 0 by Lemma 1. If
the government attacks at interim capacity c = 1, then its payoff is UσG(1; 1) = 1

1−δG − κG
because capacity will stay low in all future periods when σT (0) = 0. UσG(1; 1) > 0 by
Assumption 1. If the government does not attack at interim capacity c = 1, then its payoff
is

UσG(0; 1) = δGV
σ
G (1)

= δG[σG(1)UσG(1; 1) + (1− σG(1))UσG(0; 1)]

≤ δGUσG(0; 1).

where the inequality follows because σG(1) < 1 implies UσG(1; 1) ≤ UσG(0; 1) in equilibrium.
Because δG > 0, UσG(0; 1) ≤ δGU

σ
G(0; 1) implies UσG(0; 1) ≤ 0. But then this means G

has a profitable deviation by attacking with probability 1 at c = 1, which is the desired
contradiction.

Lemma 4. 1. If the government always attacks high-capacity terrorists (σG(1) = 1),
then low-capacity terrorists never invest (σT (0) = 0) in every equilibrium σ.

2. If the government never attacks high-capacity terrorists (σG(1) = 0), then low-capacity
terrorists always invest (σT (0) = 1) in every equilibrium σ.

Proof. For (1), consider an equilibrium σ such that σG(1) = 1. Because the government is
surely attacking high-capacity terrorists, the terrorist group’s expected utility from investing
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when capacity is low:

UσT (1; 0) = −κT + δTV
σ
T (0)

< 0 + δTV
σ
T (0) = UσT (0; 0).

Thus, T strictly prefers to not invest.
To prove (2), suppose the contrary. Then there exists an equilibrium σ such that

σG(1) = 0 and σT (0) < 1. Because σ is an equilibrium, σG(0) = σT (1) = 0 by Lemma
1. If low-capacity T invests, then the expected payoff is UσT (1; 0) = 1

1−δT − κT because
its capacity will stay large in all future periods when σG(1) = 0. Then UσT (1; 0) > 0 by
Assumption 1. Without investment, the expected payoff is

UσT (0; 0) = δTV
σ
T (0)

= δT [σT (0)UσT (1; 0) + (1− σT (0))UσT (0; 0)]

≤ δTUσT (0; 0),

where the last inequality follows because σT (0) < 1 implies UσT (0; 0) ≥ UσT (1; 0) in equilib-
rium. But then UσT (0; 0) ≤ 0 as δT > 0, which means T has a profitable deviation to invest
with capacity c = 0.

Lemma 5. The unique mixed-strategy equilibrium is the one described in Proposition 1.1.

Proof. First, consider the group’s decision to mix between acquiring capacity and not in
state c = 0. The group’s indifference condition takes the following form:

UσT (0; 0) = UσT (1; 0) ⇐⇒ δTV
σ
T (0) = −κT +(1−σG(1))(1+ δTV

σ
T (1))+σG(1)δTV

σ
T (0) (8)

T ’s value function in state c = 0 is

V σ
T (0) = σT (0)UσT (1; 0) + (1− σT (0))UσT (0; 0)

= UσT (0; 0) = δTV
σ
T (0) = 0,

where second equality follows from T ’s indifference condition. Substituting V σ
T (0) = 0 into

Equation 8 implies that the terrorist’s indifference condition can be rewritten as

0 = −κT + (1− σG(1))(1 + δTV
σ
T (1)). (9)

Solving the above indifference condition when V σ
T (1) = (1 − σG(1))(1 + δTV

σ
T (1)) demon-

strates that

σG(1) =
1− κT (1− δT )

1 + δTκT
.

Second, consider the decision of the government to mix with interim capacity c = 1.
G’s indifference condition takes the form

UσG(0; 1) = UσG(1; 1) ⇐⇒ δGV
σ
G (1) = 1− κG + δGV

σ
G (0). (10)
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As in the above paragraph, similar arguments show UσG(0; 1) = V σ
G (1) = 0, which means

Equation 10 can be written as

0 = 1− κG + δGV
σ
G (0). (11)

where the government’s value function with low initial capacity is

V σ
G (0) = σT (0) [σG(1)UσG(1; 1) + (1− σG(1))UσG(0; 1)] + (1− σT (0))(1 + δGV

σ
G (0))

= σT (0)UσG(0; 1) + (1− σT (0))(1 + δGV
σ
G (0))

= (1− σT (0))(1 + δGV
σ
G (0)),

where the second equality follows from G’s indifference condition. Solving Equation 11
demonstrates that

σT (0) =
1− κG(1− δG)

κGδG
.

D Proof of Proposition 2

Let σD denote the deterrence equilibrium. Then πσ
D

(0) = 1, and V σD

T (0) = 0 and

V σD

G (0) = 1
1−δG . Let σR denote the rampant terrorism equilibrium. Then πσ

R
(1) = 1,

and V σR

T (1) = 1
1−δT and V σR

G (1) = 0. So ŨT (σD) = 0 = ŨG(σR), ŨT (σR) = 1
1−δT , and

ŨG(σD) = 1
1−δG .

Let σM denote the mowing-the-grass equilibrium. In the proof of Proposition 1, we
showed that V σM

T (0) = V σM

G (1) = 0. Equation 11 implies that V σM

G (0) = κG−1
δG

. Because

πσ
M

(c) ∈ (0, 1) for c ∈ {0, 1}, ŨG(σM ) is a convex combination of 0 and κG−1
δG

. By Assump-

tion 2, κG−1
δG

> 0 = ŨG(σR). By Assumption 1, κG−1
δG

< 1
1−δG = ŨG(σD), which establishes

the government’s preference ordering over the three equilibria.
For the terrorists, Equation 9 can be written as

κT = (1− σMG (1))(1 + δTV
σM

T (1)) = V σM

T (1).

So V σM

T (1) = κT . Because πσ
M

(c) ∈ (0, 1) for c ∈ {0, 1}, ŨT (σM ) is a convex combination

of 0 and κT . By Assumption 1, κT ∈
(

0, 1
1−δT

)
, which establishes the terrorist group’s

preference ordering over the three equilibria.
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E Data transformation
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F Marginal effects in the calibrated model

Table 2: Marginal effects of κi.

δ−i σT (0) σG(1) πσ(1) E[x|σ]

κG
0.80 −0.82 −0.07 1.41
0.99 −0.59 −0.05 1.02

κT
0.80 −0.06 0.07 20.34
0.99 0.00 0.02 1.38

Notes. The table reports ∂f
∂κi

given the calibrated strategies in Table 1, where f ∈
{σT (0), σG(1), πσ(1), E[x|σ]} is the equilibrium quantity of interest (from mowing the grass) in the last
four columns. The first two columns reference the cost parameter of interest and the two fixed discount
factors. The effects correspond to rate of change of the graphs in Figures 1 and 2, where the colored vertical
lines meet the dashed horizontal line. Recall that σT (0) does not depend on κT and σG(1) does not depend
on κG.

G Proof of Proposition 5 (group survival)

Let V̄i denote i’s continuation value after a terrorist group ceases to exist, so V̄T = χT
1−δT

and V̄G = χG
1−δG . As before V σ

i (c) denotes i’s continuation value when the terrorist group

exists with initial capacity c ∈ {0, 1}. Note that after periods where (1 − atG)ct = 1, the
group survives with probability 1, and after all other periods, the group survives with
probability q. We characterize the mixed-strategy equilibria where σT (0), σG(1) ∈ (0, 1)
and σT (1) = σG(0) = 0.

The group’s indifference condition is: UσT (0; 0) = UσT (1; 0), which takes the form:

δT (qV σ
T (0) + (1− q)V̄T ) = −κT + σG(1)δT [qV σ

T (0) + (1− q)V̄T ] + (1− σG(1))(1 + δTV
σ
T (1)).

We can compute V σ
T (0) as

V σ
T (0) = UσT (0; 0) = δT

(
qV σ

T (0) + (1− q)V̄T
)

=
(1− q)δTχT

(1− δT )(1− qδT )
.

In addition, V σ
T (1) solves

V σ
T (1) = σG(1)δT

(
qV σ

T (0) + (1− q)V̄T
)

+ (1− σG(1))(1 + δTV
σ
T (1)).

Solving these three system of equations gives us

σG(1) = 1 +
κT (1− qδT )

−1 + qδT (1 + δTκT − χT )− δT (κT − χT )
.

To see that σG(1) ∈ (0, 1), note that σG(1) < 1 if the denominator in the above fraction
is negative, which holds when κT > 0, χT ≤ 0, and q, δT ∈ (0, 1]. In addition , note that
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σG(1) is strictly decreasing in κT . Then σG(1) > 0 is equivalent to

κT <

≡κ̄T︷ ︸︸ ︷
1− qδT (1− χT )− δTχT

(1− δT )(1− qδT )

≥ 1− qδT
(1− δT )(1− qδT )

=
1

(1− δT )
,

where the second inequality follows because κ̄T is decreasing in χT and χT ≤ 0 by assump-
tion. Then Assumption 1 implies κT <

1
(1−δT ) .

For the government, UσG(0; 1) = UσG(1; 1) is equivalent to

δGV
σ
G (1) = 1− κG + δG(qV σ

G (0) + (1− q)V̄G).

Similar arguments from above imply V σ
G (1) = UσG(0; 1) = 0, and V σ

G (0) solves

V σ
G (0) = (1− σT (0))

[
1 + δG(qV σ

G (0) + (1− q)V̄G)
]
.

Solving this system of equations gives us

σT (0) =
(1− δG)(1− (1− qδG)κG) + (1− q)δGχG

q(1− δG)δGκG
.

To see that σT (0) ∈ (0, 1), note that σT (0) is strictly decreasing in κG. Then σT (0) > 0 is
equivalent to

κG <

≡κ̄G︷ ︸︸ ︷
1− δG(1− (1− q)χG)

(1− δG)(1− qδG)
≥ 1

1− δ
,

where the second inequality follows because κ̄G is increasing in χG and χG ≥ 1. Then
Assumption 1 implies κG <

1
1−δG . Finally, σT (0) < 1 is equivalent to

κT > 1 +
(1− q)δGχG

1− δG
,

which is the necessary and sufficient condition stated in the proposition. Notice that, when
q < 1, this lower bound on κT is larger than Assumption 2.

H Proof of Proposition 6 (depreciating capacity)

We characterize the mixed-strategy equilibria where σT (0), σG(1) ∈ (0, 1) and σT (1) =
σG(0) = 0. Recall that the terrorists indifference condition UσT (0; 0) = UσT (1; 0) can be
written as

−κT + V σ
T (1) = δTV

σ
T (0) = 0,
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where second inequality follows because UσT (0; 0) = UσT (1; 0) implies UσT (0; 0) = 0 and
V σ
T (0) = 0 as in the previous proofs. When the interaction begins in a state with high

capacity, capacity is high tomorrow with probability (1− σG(1))p. So the terrorist group’s
continuation value with high capacity is

V σ
T (1) = σG(1)δTV

σ
T (0) + (1− σG(1)) (1 + δT [pV σ

T (1) + (1− p)V σ
T (0)])

= (1− σG(1)) (1 + δT pV
σ
T (1)) .

Solving this system of equations demonstrates that G must be attacking with probability

σG(1) =
1− κT (1− pδT )

1 + pδTκT
.

Notice σG(1) strictly decreasing in κT . So σG(1) < 1 is equivalent to κT > 0, as assumed.
In addition, σG(1) > 0 is equivalent to κT < 1

1−δT p , which is half of the necessary and
sufficient condition stated in the proposition.

In this version, the government’s indifference condition UσG(0; 1) = UσG(1; 1) is equivalent
to

δG [pV σ
G (1) + (1− p)V σ

G (0)] = 1− κG + δGV
σ
G (0)

where the left-hand-side incorporates the possibility that T ’s capacity depreciates with
probability 1 − p even with no government attacks. Because UσG(0; 1) = UσG(1; 1), we can
write G’s continuation value in the high-capacity state as

V σ
G (1) = σG(1)UσG(1; 1) + (1− σG(1))UσG(0; 1)

= UσG(0; 1) = δG [pV σ
G (1) + (1− p)V σ

G (0)]

=
(1− p)V σ

G (0)δG
1− pδG

.

We can write G’s continuation value in the low-capacity state as

V σ
G (0) = σT (0)V σ

G (1) + (1− σT (0)) [1 + δGV
σ
G (0)] .

Solving this system of equations demonstrates that T must acquire capacity with probability

σT (0) =
1− κG(1− pδG)

pδGκG
.

Notice that σT (0) is strictly decreasing in κG. So σT (0) < 1 is equivalent to κG > 1
(Assumption 2). Similarly, σT (0) > 0 is equivalent to κG < 1

1−δGp , which is the other half
of the condition stated in the proposition.
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I Proof of Proposition 7 (multiple capacity levels)

Recall that σ takes the form:

σT (2) = σG(0) = σG(1) = 0 = 1− σT (0)

σG(2) =
1− µ− (1− δT )κT

1 + 2δTκT

σT (1) =
1− (1− δG)κG − δGµ

δG(κG − 1)

To see that σ is an equilibrium, we proceed in four steps. First, we characterize the gov-
ernment’s equilibrium value functions, V σ

G , and the terrorists’ mixing probability, σT (1),
that makes the government indifferent between attacking and not at high-capacity levels,
c = 2. Second, we make sure that the government has no profitable one-shot deviation
at medium-capacity levels, c = 1. Third, we characterize the terrorist group’s equilibrium
value functions, V σ

T , and the government’s mixing probability, σG(2), that makes the ter-
rorist indifferent between investing and not at medium-capacity levels, c = 1. Fourth, we
make sure that the terrorist group has no profitable one-shot deviation at low-capacity lev-
els, c = 1.

Step 1. G’s indifference condition is UσG(1; 2) = UσG(0; 2):

1− κG + δGV
σ
G (0) = δGV

σ
G (2) = 0, (12)

where the last inequality follows from now standard arguments as UσG(1; 2) = UσG(0; 2)
implies V σ

G (2) = 0. Recall that T builds with probability 1 at c = 0 and mixes between
building and not at c = 1. So V σ

G (0) = 1− µ+ δGV
σ
G (1). We can write V σ

G (1) as

V σ
G (1) = σT (1)[σG(2)UσG(1; 2) + (1− σG(2))UσG(0; 2)] + (1− σT (1))[1− µ+ δGV

σ
G (1)]

= σT (1)UσG(0; 2) + (1− σT (1))[1− µ+ δGV
σ
G (1)]

= (1− σT (1))[1− µ+ δGV
σ
G (1)].

The first inequality follows because UσG(1; 2) = UσG(0; 2) by assumption. The second follows
because UσG(0; 2) = δGV

σ
G (2) = 0. Solving Equation 12 shows that

σT (1) =
1− (1− δG)κG − δGµ

δG(κG − 1)
,

where V σ
G (0) = κG−1

δG
and V σ

G (1) = κG−1−δG(1−µ)
δ2G

. To see that σT (1) > 0, note that it is

strictly decreasing in κG. As such,

σT (1) > 0 ⇐⇒ κG <
1− δGµ
1− δG

,

which is assumed. Likewise,

σT (1) < 1 ⇐⇒ 1 + δG(1− µ) < κG.
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Step 2. To ensure G has no profitable deviation at medium capacity level c = 1, G’s payoff
from attacking is

UσG(1; 1) = 1− κG + δGV
σ
G (0) = 1− κG + δG

κG − 1

δG
= 0.

Thus, we need to show

V σ
G (1) =

κG − 1− δG(1− µ)

δ2
G

> 0

which holds when κG > 1 + δG(1− µ), as assumed.

Step 3. T ’s indifference condition if UσT (0; 1) = UσT (1; 1):

µ+ δTV
σ
G (1) = −κT + σG(2)[0 + δTV

σ
T (0)] + (1− σG(2))[1 + δTV

σ
T (2)]. (13)

Because UσT (0; 1) = UσT (1; 1), we can compute

V σ
T (1) = UσT (0; 1) = µ+ δTV

σ
T (1) =

µ

1− δT
.

In addition, because σG(1) = 0 = 1−σT (0), V σ
T (0) = µ−κT + δTV

σ
T (1). Finally, V σ

T (2) can
be computed as

V σ
T (2) = σG(2)δTV

σ
T (0) + (1− σG(2))[1 + δTV

σ
T (2)].

Solving Equation 13 demonstrates that

σG(2) =
1− (1− δT )κT − µ

1 + 2δTκT
,

where V σ
T (2) = κT +V σ

T (1). To see that σG(2) ∈ (0, 1), note that σG(2) is strictly decreasing
in κT . So σG(2) > 0 if and only if κT <

1−µ
1−δT . Likewise σG(2) < 1 if and only if

κT > −
µ

1 + δ

which holds because the fraction above is negative.

Step 4. To see that T wants to acquire capacity at c = 0 note that

UσT (0; 0) = δTV
σ
T (0)

= δT (µ− κT + δTV
σ
T (1))

= δT

(
µ− κT + δT

µ

1− δT

)
= δT (−κT + V σ

T (1)).

Because UσT (1; 0) = −κT + V σ
T (1), it suffices that

V σ
T (1)− κT > 0 ⇐⇒ κT <

µ

1− δT
,
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as assumed.

J Proof of Lemma 2 and Proposition 8 (government capac-
ity)

J.1 Proof of Lemma 2

Let V σ
i (c, b) denote i’s continuation when the interaction starts in state (c, b). Recall that

σG(c, 0) = 0 = σG(0, b), for all c, b ∈ {0, 1}. With this in mind, we write T ’s continuation
values as a system of 4 equations:

V σ
T (1, 0) = 1 + δT (βV σ

T (1, 1) + (1− β)V σ
T (1, 0)) (14)

V σ
T (1, 1) = σG(1, 1)δT (βV σ

T (0, 1) + (1− β)V σ
T (0, 0)) + (1− σG(1, 1))(1 + δTV

σ
T (1, 1)) (15)

V σ
T (0, 0) = σT (0, 0)(−κT + V σ

T (1, 0)) + (1− σT (0, 0))δT (βV σ
T (0, 1) + (1− β)V σ

T (0, 0)) (16)

V σ
T (0, 1) = σT (0, 1)(−κT + V σ

T (1, 1)) + (1− σT (0, 1))δTV
σ
T (0, 1) (17)

With these continuation values in hand, we prove the lemma in three steps.
Step 1: Show that σT (0, 1) ∈ (0, 1) implies σT (0, 0) = 1 in equilibrium σ. Suppose

σT (0, 1) ∈ (0, 1) in some equilibrium σ. Then T is indifferent between investing and not
given c = 0 and b = 1, i.e., −κT + V σ

T (1, 1) = δTV
σ
T (0, 1). As in the above proofs, UσT (0; c =

0, b = 1) = UσT (1; c = 0, b = 1) and Equation 17 imply that V σ
T (0, 1) = 0, which means

V σ
T (1, 1) = κT . Substituting V σ

T (0, 1) = 0 and V σ
T (1, 1) = κT into Equations 14 and 16 gives

us

V σ
T (1, 0) = 1 + δT (βκT + (1− β)V σ

T (1, 0)) (14′)

V σ
T (0, 0) = σT (0, 0)(−κT + V σ

T (1, 0)) + (1− σT (0, 0))δT ((1− β)V σ
T (0, 0)) (16′)

Solving Equations 14′ and 16′ shows that

V σ
T (1, 0) =

1 + δTβκT
1− (1− β)δT

and V σ
T (0, 0) =

(1− (1− δT )σT (0, 0)κT )

(1− (1− β)δT )(1− (1− β)(1− σT (0, 0))δT )
.

Now consider the state (c, b) = (0, 0). Using the value functions above, we can compute the
difference

UσT (1; c = 0, b = 0)− UσT (0; c = 0, b = 0) = −κT + V σ
T (1, 0)− δT (βV σ

T (0, 1) + (1− β)V σ
T (0, 0))

= −κT + V σ
T (1, 0)− δT (1− β)V σ

T (0, 0)

=
1− (1− δT )κT

1− (1− β)(1− σT (0, 0))δT
> 0.

Above, the last inequality follows via Assumption 1. Thus, UσT (1; c = 0, b = 0) > UσT (0; c =
0, b = 0) so σT (0, 0) = 1, as required.

Step 2: Show that σT (0, 0) < 1 implies σT (0, 1) = 0 in equilibrium σ. To see this,
suppose σT (0, 0) < 1 in some equilibrium σ. Either σT (0, 1) ∈ {0, 1}. If not, then σT (0, 1) ∈
(0, 1), which means Step 1 implies σT (0, 0) = 1, a contradiction. If σT (0, 1) = 0, then
the proof is complete. To show a contradiction, consider σT (0, 1) = 1. By Equation 17,
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σT (0, 1) = 1 implies V σ
T (0, 1) = −κT +V σ

T (1, 1). Because σT (0, 0) < 1, V σ
T (0, 0) = UσT (0; c =

0, b = 0). Thus, Equation 16 implies V σ
T (0, 0) =

βδTV
σ
T (0,1)

1−(1−β)δT
.

Because σT (0, 0) < 1, T must weakly prefer not investing to investing in state (c, b) =
(0, 0), that is,

−κT + V σ
T (1, 0) ≤ δT (βV σ

T (0, 1) + (1− β)V σ
T (0, 0)).

Substituting V σ
T (0, 1) = −κT + V σ

T (1, 1) and V σ
T (0, 0) =

βδTV
σ
T (0,1)

1−(1−β)δT
gives us

−κT + V σ
T (1, 0) ≤ δT

(
β(−κT + V σ

T (1, 1)) + (1− β)
βδT (−κT + V σ

T (1, 1))

1− (1− β)δT

)
,

and isolating V σ
T (1, 0) on the right-hand side implies

V σ
T (1, 0) ≤

(1− δT )κT + βδTV
σ
T (1, 1)

1− (1− β)δT
.

We can also rewrite Equation 14 to show that VT (1, 0) = 1+βδTVT (1,1)
1−(1−β)δT

≥ (1−δT )κT+βδTV
σ
T (1,1)

1−(1−β)δT
,

where the inequality follows from the displayed equation above. But that means (1−δT )κT ≥
1, which contradicts Assumption 1.

Step 3: Consider an equilibrium in which neither state (0, 1) nor (1, 1) is absorbing.
Because (0, 1) is not absorbing, it must be the case that σT (0, 1) > 0. The contrapositive of
Step 2 implies σT (0, 0) = 1. If σT (0, 1) = 1, then T is always investing. As in the proof of
Proposition 1, κG > 1 implies that G’s best response to T always investing is to not attack,
i.e., σG(1, 1) = 0. But this means (1, 1) is absorbing. So we must have σT (0, 1) ∈ (0, 1).

J.2 Proof of Proposition 8

We characterize equilibria of the form σT (0, 1) ∈ (0, 1) and σT (0, 0) = 1. As discussed
in the main text, we must also have σT (1, b) = 0 for all b ∈ {0, 1}, because high-capacity
groups have no incentives to invest. For the government, we must have σG(c, 0) = 0 because
attacks are only feasible in states (c, b) with b = 1. Likewise, the government will only attack
groups with high capacity, so σG(0, 1) = 0. Finally, because the group is mixing in state
(c, b) = (0, 1), the government will need to mix (to maintain T ’s indifference condition) in
state (c, b) = (1, 1), which is the only state where it can potentially mix between attacking
and not.

T ’s indifference condition in state (c, b) = (0, 1) is

−κT + V σ
T (1, 1)︸ ︷︷ ︸

UσT (1;c=0,b=1)

= δTV
σ
T (0, 1)︸ ︷︷ ︸

UσT (0;c=0,b=1)

,

where

V σ
T (1, 1) = σG(1, 1)δT [βV σ

T (0, 1) + (1− β)V σ
T (0, 0)] + (1− σG(1, 1)) [1 + δTV

σ
T (1, 1)] .

As in the proofs above, T ’s indifference condition implies that V σ
T (0, 1) = UσT (0; c = 0, b =

1) = δTV
σ
T (0, 1), so V σ

T (0, 1) = 0, which means V σ
T (1, 1) = κT . In addition, because

σT (0, 0) = 1, T is surely investing in state (0, 0), so V σ
T (0, 0) = −κT + V σ

T (1, 0). Finally, we
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can write
V σ
T (1, 0) = 1 + δT [βV σ

T (1, 1) + (1− β)V σ
T (1, 0)] .

Notice, the continuation values can be written as functions of σG(1, 1) and V σ
T (1, 0). Solving

this system of 2 equations with 2 unknowns—σG(1, 1) and V σ
T (1, 0)—gives us

V σ
T (1, 0) =

1 + βδTκT
1− (1− β)δT

and σG(1, 1) =
(1− (1− β)δT )(1− (1− δT )κT )

1 + 2(1− β)δ2
TκT + δ(−2 + 2β + 2κT − βκT )

.

First, given Assumption 1 and that β, δT ∈ (0, 1) implies σG(1, 1) ∈ (0, 1) if and only if

κT > δT (1−β)
1−(1−β)δ2T

, which is one restriction in Proposition 8. Finally, Step 1 in the proof of

Lemma 2 shows that, if T ’s indifference condition holds, i.e., UσT (0; c = 0, b = 1) = UσT (1; c =
0, b = 1), then T has a strict preference to build capacity in state (c, b) = (0, 0). So T has
no profitable deviation when σG(1, 1) takes the form above.

G’s indifference condition in state (c, b) = (1, 1) is

1− κG + δG [βV σ
G (0, 1) + (1− β)V σ

G (0, 0)]︸ ︷︷ ︸
UσG(1;c=1,b=1)

= δGV
σ
G (1, 1)︸ ︷︷ ︸

UσG(0;c=1,b=1)

.

V σ
G (1, 1) = UσG(0; c = 1, b = 1) = δGV

σ
G (1, 1) implies V σ

G (1, 1) = 0. The remainder of G’s
continuation values take the following form.

V σ
G (1, 0) = δG (βV σ

G (1, 1) + (1− β)V σ
G (1, 0)) = δG(1− β)V σ

G (1, 0)

V σ
G (0, 0) = V σ

G (1, 0)

V σ
G (0, 1) = σT (0, 1)V σ

G (1, 1) + (1− σT (0, 1))(1 + δGV
σ
G (0, 1)) = (1− σG(0, 1))(1 + δGV

σ
G (0, 1)).

In the expressions for V σ
G (1, 0) and V σ

G (0, 1), we invoke the fact that V σ
G (1, 1) = 0. In

the expression for V σ
G (0, 0), we invoke the fact that σT (0, 0) = 1. Solving this system of

equations, along with the indifference condition above gives us

V σ
G (0, 1) =

κG − 1

βδG
and σT (0, 1) =

δG(κG − 1 + β)− (κG − 1)

δG(κG − 1 + β)
,

along with V σ
G (1, 0) = 0. Assumptions 1 and 2, along with the restrictions that δG, β ∈ (0, 1),

imply that σT (0, 1) ∈ (0, 1) if and only if κG <
1−(1−β)δG

1−δG .

K Unobservable investments

The baseline model has perfect information for three reasons: to match the mowing-
the-grass metaphor, to show that imperfect or incomplete information was not necessary
for government attacks to cycle over time, and to capture situations where the government
has a considerable intelligence advantage. The last motivation plausibly captures the em-
pirical application to the IDF in the Israeli-Palestinian conflict (Jacobson and Kaplan 2007;
Jaeger and Paserman 2008). It could be the case that governments cannot perfectly observe
terrorist capacity, however. Even if the government has substantial intelligence gathering
capabilities, the group may be able to hide its investment for a period of time. I account
for this possibility in this section.
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Specifically, I amend the baseline model as follows. Within each period t, both actors
observe the initial level of group capacity, c. Next, the group chooses whether or not to
attack, atT ∈ {0, 1}. This decision and the interim level of capacity, c, is unobserved by
the government. Finally, the government chooses whether or not to attack and payoffs are
accrued. Thus, the group can hide newly acquired capacity for one period. Although the
government learns the ultimate capacity level in the next period, it makes its attack decision
without knowing the interim level. As such the per-period interaction has a similar flavor
to the simultaneous (per-period) interaction in Dragu (2017) and Di Lonardo and Dragu
(2021).

As above, I maintain Assumptions 1 and 2 throughout, and I focus on Markov Perfect
Equilibria. For actor i, a strategy is a function σi : {0, 1} → [0, 1], where σT (c) is the
probability that the terrorist group invests with initial capacity c, and σG(c) is the proba-
bility that the government attacks given initial capacity c. Unlike the baseline model, the
government is unable to condition on interim capacity c, which is unobserved.

This difference means that the government may attack after observing that initial ca-
pacity is low c = 0 in equilibrium. Like the baseline model, the terrorist group does not
invest if their capacity is high (σT (1) = 0) in equilibrium, but in this extension there may
be different types of mixed strategy equilibria as the government may be mixing when c = 0
or c = 1.

Lemma 6. Suppose σ is an equilibrium such that the low-capacity group acquires capacity
with probability strictly between zero and one (σT (0) ∈ (0, 1)).

1. If the government is mixing after high initial capacity (σG(1) ∈ (0, 1)), then it never
attacks when initial capacity is low (σG(0) = 0).

2. If the government is mixing after low initial capacity (σG(0) ∈ (0, 1)), then it always
attacks when initial capacity is high (σG(1) = 1).

Proof. To see the first claim, σG(1) ∈ (0, 1) in equilibrium σ implies that the government
is indifferent between attacking UσG(1; 1) = UσG(0; 1):

1− κG + δGV
σ
G (0) = 0 + δGV

σ
G (1).

Notice that the government’s indifference condition implies that V σ
G (1) = UσG(0; 1) =

δGV
σ
G (1). Thus, V σ

G (1) = 0. Substituting this into the expression above gives us

1− κG + δGV
σ
G (0) = 0,

which implies V σ
G (0) > 0 as κG > 1 by Assumption 2. Now, consider the government’s

decision on whether or not to attack when initial capacity is low. If the government attacks,
then its payoff is UσG(1; 0) = UσG(1; 1) = 1− κG + δGV

σ
G (0) = 0. If the government does not

attack, then its payoff is

UσG(0; 0) = σT (0) [0 + δGV
σ
G (1)]︸ ︷︷ ︸

=0

+(1− σT (0)) [1 + δGV
σ
G (0)]︸ ︷︷ ︸

>0

.

Because σT (0) ∈ (0, 1), UσG(0; 0) > 0 = UσG(1; 0).
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To see the second claim, σG(0) ∈ (0, 1) in equilibrium σ implies that the government is
indifferent between attacking UσG(1; 0) = UσG(0; 0):

1− κG + δGV
σ
G (0) = σT (0)[0 + δGV

σ
G (1)] + (1− σT (0))[1 + δGV

σ
G (0)].

To draw a contradiction, suppose σG(1) < 1. Because σ is an equilibrium, σG(1) < 1 implies
UσG(0; 1) ≥ UσG(1; 1) which means

V σ
G (1) = UσG(0; 1) = 0 + δGV

σ
G (1) = 0

and
UσG(0; 1) = 0 ≥ UσG(1; 1) = 1− κG + δGVG(0).

Substituting V σ
G (1) = 0 into the government’s indifference condition gives us

1− κG + δGV
σ
G (0) = (1− σT (0))[1 + δGV

σ
G (0)].

The left-hand side of the above expression is UσG(1; 1), which is weakly less than zero. In
addition, the right-hand side is strictly greater than zero as σT (0) ∈ (0, 1) and V σ

G (0) ≥ 0.
This establishes the desired contradiction.

The idea behind the Lemma is that (assuming the terrorist group is mixing in its decision
to acquire capacity) if the government is indifferent between attacking and not when the
group has high capacity at the beginning of the period, then it will not attack groups
with low capacity at the beginning of the period. Likewise, if the government is indifferent
between attacking and not when the group has low capacity at the beginning of the period,
it will surely attack when it knows that the group has high capacity at the beginning of the
period. As a consequence, we can reduce our search for mixed strategy equilibria to two
cases:

1. Mowing the grass with verification: σT (0) ∈ (0, 1), σG(1) ∈ (0, 1), and σG(0) = 0

2. Mowing the grass without verification: σT (0) ∈ (0, 1), σG(0) ∈ (0, 1), and σG(1) = 1

With verification, the government waits to attack the group until it sees high capacity
although the government is attacking with probability strictly between zero and one. With-
out verification, the government surely attacks the group when it sees high capacity, and
it attacks the group after seeing low capacity with probability strictly between zero and
one. The next result says that if κT > 1, then mowing the grass with verification is an
equilibrium. The comparative statics of this equilibrium match those in the baseline model.

Proposition 9. Mowing the grass with verification is an equilibrium if and only if κT > 1.
The actors mix with the following probabilities:

σG(1) =
1− (1− δT )κT

δTκT
and σT (0) =

1− (1− δG)κG
δGκG

.

Comparative statics match the direction of those in the baseline model (Proposition 3).
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Proof. First, the group must be indifferent between acquiring and not acquiring capacity
with low initial capacity:

0 + δTV
σ
T (0)︸ ︷︷ ︸

UσT (0;0)

= 1− κT + δTV
σ
T (1)︸ ︷︷ ︸

UσT (1;0)

. (18)

On the right-hand side, the group is assured to get at least one period of benefit form high
capacity because G is only attacking with positive probability after seeing c = 1 and the
group’s initial investment decision is hidden. As above, T ’s indifference condition at c = 0
implies V σ

T (0) = 0. In addition, V σ
T (1) = σG(1)δTV

σ
T (0) + (1− σG(1))[1 + δTV

σ
T (1)]. So we

have a system of three equations and three unknowns (σG(1), V σ
T (0), V σ

T (1)) implying that:

σG(1) =
1− (1− δT )κT

δTκT
and V σ

T (1) =
κT − 1

δT
.

Notice σG(1) < 1 and V σ
T (1) > 0 if and only if κT > 1. In addition, Assumption 1 guarantees

σG(1) > 0.
Second, the government must be indifferent between attacking and not after seeing high

initial capacity, c = 1. This means

0 + δGV
σ
G (1)︸ ︷︷ ︸

UσG(0;1)

= 1− κG + δGV
σ
G (0)︸ ︷︷ ︸

UσG(1;1)

(19)

As above, G’s indifference condition at c = 1 implies V σ
G (1) = 0. In addition, V σ

G (0) =
σT (0)δGVG(1) + (1 − σT (0))[1 + δGV

σ
G (0)]. As above, we have a system of three equations

and three unknowns (σT (0), V σ
G (0),V σ

G (1)) with the solution as

σT (0) =
1− (1− δG)κG

δGκG
and V σ

G (0) =
κG − 1

δG
.

Third, the comparative statics follow from straightforward differentiation given the func-
tional forms of the mixed strategies derived above.

Proposition 10. Mowing the grass without verification is never an equilibrium.

Proof. For mowing the grass without verification, the government’s indifference condition
takes the form:

σT (0)[0 + δGV
σ
G (1)] + (1− σT (0))[1 + δGV

σ
G (0)]︸ ︷︷ ︸

UσG(0;0)

= 1− κG + δGV
σ
G (0)︸ ︷︷ ︸

UσG(1;0)

. (20)

On the left-hand side, the government is uncertain whether or not the group acquires
capacity after observing c = 0, but this occurs with probability σT (0). Because the gov-
ernment is surely attacking after observing c = 1, V σ

G (1) = 1− κG + δGV
σ
G (0). In addition,

after observing c = 0, the government is indifferent between attacking and not. Thus,
V σ
G (0) = UσG(1; 0) = 1 − κG + δGV

σ
G (0). Solving this system of equations implies that

σT (0) = κG, but this is infeasible because κG > 1.

What happens when κT < 1? This is a possibility in the baseline analysis under
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Assumptions 1 and 2. The next result says κT < 1 implies that rampant terrorism is the
unique equilibrium.

Proposition 11. If κT < 1, then the only equilibrium is a rampant terrorism equilibrium
in which (a) the terrorist group acquires capacity when initial capacity is low (σT (0) = 1)
and does not acquire capacity otherwise (σT (1) = 0) and (b) the government never attacks
at any capacity level (σG(c) = 0).

Proof. By Lemma 1, mixed strategy equilibria take the form of mowing the grass with
or without verification. If κT < 1, then neither equilibrium exists by the previous two
propositions. Thus, we focus on pure strategy equilibria. As in Lemma 1, the terrorist
group will not invest when capacity is high, σT (1) = 0.

We first argue that σT (0) = 1. If not, then σT (0) = 0, which implies V σ
T (0) = 0 and

UσT (0; 0) = 0. Suppose T deviates at c = 0 by investing once and then returning to strategy
σT , i.e., of never investing. Then T ’s payoff is

1− κT + δT

[
σG(1) · 0 + (1− σG(1))

1

1− δT

]
> 0,

where σG(1) = 1 implies V σ
T (1) = 0 and σG(1) = 0 implies V σ

T (1) = 1
1−δT . But this means

T has a profitable deviation. Thus, σT (0) = 1.
To see that σG(c) = 0, suppose not. If σG(0) = 1, then V σ

G (0) = UσG(1; 0) = 1−κG
1−δG < 0.

But this means G has a profitable deviation in state c = 0 by choosing not to attack in all
future periods. Thus, σG(c) = 0. If σG(1) = 1, then the path of play alternates between
c = 0 and c = 1, where V σ

G (0) = 0 + δGV
σ
G (1) and V σ

G (1) = 1− κG + δGV
σ
G (0) < 0. But this

also means G has a profitable deviation after initial capacity c = 1 by never attacking in all
future periods.

L Finite interaction

What happens without an infinite horizon? Suppose the interaction occurs for a finite
number of periods T ∈ N, and define τ∗i ∈ N0 as

τ∗i ≡ min

{
τ ∈ N0 | κi <

τ∑
t=1

δt−1
i

}
− 1.

In words, if the number of future periods is less than or equal τ∗i , then i’s costly action
cannot not be (strictly) profitable. Note that τ∗i is well defined by Assumption 1. In
addition, Assumption 2 implies that τ∗G ≥ 1, but it is possible that τ∗T = 0 if κT < 1. By

construction, κi ≥
∑τ∗i

t=1 δ
t−1
i . Generically, this will hold with strict inequality.

Assumption 3. The game is generic, that is,

τ∗i > 0 implies κi >

τ∗i∑
t=1

δt−1
i

for all i.
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In this environment, τ∗i is a measure of weakness. Specifically, if τ∗T < τ∗G, then the
terrorists can credibly commit to acquiring capacity with fewer periods left in the interaction
than the government needs to credibly commit to attacking. If τ∗G ≤ τ∗T , then the roles
are reversed. The government can credibly commit to attacking high-capacity terrorists
with fewer remaining periods than the group needs for acquiring capacity to be profitable.
The next result demonstrates that the actor with the smaller τ∗i receives a considerable
advantage.

Proposition 12. Assume T > min{τ∗T , τ∗G}. In a generic game, the following hold in any
Subgame Perfect Nash Equilibrium.

1. τ∗T < τ∗G implies that the government never attacks and that the terrorists build in
period t if and only if ct = 0 and t ≤ T − τ∗T . Along the equilibrium path, high-
capacity terrorism emerges (ct = 1 for all t > 1).

2. τ∗G ≤ τ∗T implies that the terrorists never acquire capacity and that the government
attacks in period t if and only if ct = 1 and t ≤ T − τ∗G. Along the equilibrium path,
low-capacity terrorism emerges (ct = 0 for all t > 1).

The proof is below. One difference between the statements of Proposition 1 and Propo-
sition 12 is that the latter considers Subgame Perfect Nash Equilibria whereas the former
considers only Markov Perfect Equilibria. Perhaps unsurprisingly, in the finite version of
the model, the subgame perfect equilibrium strategies only depend on the relevant capacity
level (ct or ct) and the number of future periods. More substantively, Proposition 12 demon-
strates how the potential of continued interaction is necessary to generate mowing-the-grass
dynamics with endogenous terrorist capacity and complete information. Mowing the grass
or other mixed-strategy equilibria more generally do not emerge with a finite number of
interactions.

L.1 Proof of Proposition 12

For t > 1, a history is ht = {(c1, a1), . . . , (ct−1, at−1)} ∈ Ht; for t = 1, a history is
h1 = c1. Recall c1 is an exogenous parameter. To describe the transition of the state
variable, define the function

G(ht, t) =

{
(1− at−1

G ) max{ct−1, at−1
T } if t > 1

ht if t = 1

where ct = G(ht, t) for all t > 1.
In this version of the model, a strategy for the terrorist group is σT = {σtT }Tt=1 where

σtT : Ht → [0, 1] and σtT (ht) is the probability of T acquiring capacity in period t after
history ht. A strategy for the government is σG = {σtG}Tt=1 where σtG : {0, 1} ×Ht → [0, 1]
and σtG(atT , h

t) is the probability of G attacking in period t after history ht and T ’s action
atT . Let V σ

i (ht) denote i continuation value after history ht given strategy profile σ. As in

Lemma 1, if σ is an equilibrium, then V σ
i (ht) ∈ [0,

∑T
t′=T −t+1 δ

t′−1] for all i, all ht and all
t.

Lemma 7. In a generic game with subgame perfect Nash equilibrium σ, the following hold
in every period t and history ht ∈ Ht:
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a) t > T − τ∗T implies σtT (ht) = 0.

b) t > T − τ∗G implies σtG(atT , h
t) = 0 for every atT ∈ {0, 1}.

Proof. We prove (a), and (b) follows from similar arguments. Consider a subgame perfect
Nash equilibrium σ. To derive a contradiction, suppose there exists t such that t > T − τ∗T
and σtT (ht) > 0. The two cases are t = T and T − τ∗T < t < T . Consider the latter. For
any history ht ∈ Ht, if T acquires capacity, then its payoff is

−κT + σtG(1, ht)
[
0 + δTV

σ
T ({(c1, a1), . . . , (ct−1at−1), (G(ht, t), 1, 1)})

]
+ (1− σtG(1, ht))

[
1 + δTV

σ
T ({(c1, a1), . . . , (ct−1at−1), (G(ht, t), 1, 0)})

] (21)

At most, T receives 1 in all future periods and 0 at least. Let ∆ = T − t denote the number
of periods in the future. So for any ht+1,

0 ≤ V σ
T (ht+1) ≤

∆∑
t′=1

δt
′−1
T .

Thus, the expression in Equation 21 is bounded above by

−κT + 1 + δT

(
∆∑
t′=1

δt
′−1
T

)
= −κT +

∆+1∑
t′=1

δt
′−1
T < 0, (22)

where the last inequality follows because ∆ = T − t and t > T − τ∗ imply ∆ < τ∗T . Thus,
∆ + 1 ≤ τ∗T .

In contrast, if T does not acquire capacity, then its payoff is

σtG(1, hT )
[
0 + δTV

σ
T ({(c1, a1), . . . , (ct−1at−1), (G(ht), 1, 1)})

]
+(1− σtG(1, hT ))

[
G(ht) + δTV

σ
T ({(c1, a1), . . . , (ct−1at−1), (G(ht), 1, 0)})

]
.

(23)

Recall that for any ht+1, 0 ≤ V σ
T (ht+1) in equilibrium σ. So a lower bound on T ’s expected

utility for not acquiring capacity is 0, which is strictly larger than the upper bound on
T ’s expected utility for acquiring capacity. So σ cannot be an equilibrium because T can
profitably deviate to not investing with probability one.

Finally, for the case where t = T—i.e., the last period—the proof follows along identical
lines but is simplified because there are no future interactions.

Lemma 8. Assume τ∗T < τ∗G. In a generic game with subgame perfect Nash equilibrium σ,
the following hold in every period t and history ht ∈ Ht such that t ≤ T − τ∗T :

1. the government never attacks, i.e., σtG(atT , h
t) = 0 for every atT ∈ {0, 1}.

2. terrorists acquire capacity if and only if ct = 0, i.e., σtT (ht) = 1−G(ht, t).

Proof. The proof is by induction. For the basis step, we prove the result when t = T − τ∗T .
Fix ht ∈ Ht. Because τ∗T < τ∗G, T −τ∗T > T −τ∗G, so Lemma 7 implies that G will not attack
in period t = T − τ∗T . Thus (in the basis step), it suffices to show that T ’s expected utility
from acquiring capacity is strictly larger than its expected utility from not acquiring if and
only if G(ht, t) = 0.
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Lemma 7 implies that G will not attack in period t = T − τ∗T and in all future periods
t′ > t. Lemma 7 also implies T will not acquire capacity in all future periods t′ > t. Let
∆ = T − t denote the number of future periods. If T acquires capacity in period t, its payoff
is

1− κT + δT

∆∑
t′=1

δt
′−1
T = −κT +

∆+1∑
t′=1

δt
′−1
T

= −κT +

τ∗T+1∑
t′=1

δt
′−1
T

> 0.

where the second equality follows because ∆ = T − t = τ∗T and the inequality follows by
the construction of τ∗T . If T does not acquire capacity in period t, then its payoff is

G(ht, t) + δTG(ht, t)

∆∑
t′=1

δt
′−1
T = G(ht, t)

∆+1∑
t′=1

δt
′−1
T

= G(ht, t)

τ∗T+1∑
t′=1

δt
′−1
T

If G(ht, t) = 0, the value above is zero, and if G(ht, t) = 1, the value above is strictly

larger than −κT +
∑τ∗T+1

t′=1 δt
′−1
T . Thus, T ’s expected utility from acquiring capacity in

period t is strictly larger than its expected utility from not acquiring capacity if and only
if G(ht, t) = ct = 0, which completes the basis step.

For the induction step, consider a period t such that t < T − τ∗T , and suppose the
claim holds true for all t′ ∈ {t + 1, . . . , T − τ∗T }. Fix ht ∈ Ht. We first argue that the
government will not attack when interim capacity is ct. Notice that G will not attack in
any period t′ ∈ {t + 1, . . . , T − τ∗T } by assumption. In addition, G will not attack in any
period t′ > T − τ∗T by Lemma 7. So G will not attack in any future period. In addition,
either ct = 1 or ct = 0 in which case T would acquire capacity in period t′ + 1. Thus, G
is receiving 0 in all future periods, regardless of its choice of action in period t. Hence, G
only attacks if 1− κG > 0, but this not true by Assumption 2.

We next argue that the terrorists acquire capacity if and only if G(ht, t) = 0. Notice that
G will not attack in period t and in all future periods. So if the terrorists have capacity at
the end of period t, it will persist for all future periods. Let ∆ = T − t denote the number
of future periods. This is strictly larger than the number of future periods in the basis
step. As such, an identical logic demonstrates that T will acquire capacity if and only if
G(ht, t) = 0.

Lemma 9. Assume τ∗G ≤ τ∗T . In a generic game with subgame perfect Nash equilibrium σ,
the following hold in every period t and history ht ∈ Ht such that t ≤ T − τ∗G:

1. the government attacks if and only if ct = 1, i.e., σtG(atT , h
t) = max{atT , G(ht, t)}.

2. terrorists never acquire capacity, i.e., σtT (ht) = 0.
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Proof. The proof is by induction. For the basis step, consider t = T − τ∗G and ht ∈ Ht.
First, we show that G’s expected utility from attacking is strictly larger than its expected
utility from not attacking if and only if ct = 1. To do this, note that in all future periods
t′ > t = T − τ∗G, the government never attacks and the terrorists never acquire capacity by
Lemma 7 and the assumption that τ∗G ≤ τ∗T . Let ∆ = T − t denote the number of future
periods. Then G’s payoff from attacking is

1− κG + δG

∆∑
t′=1

δt
′−1
G = −κG +

∆+1∑
t′=1

δt
′−1
G

= −κG +

τ∗G+1∑
t′=1

δt
′−1
G

> 0

where the second equality follows because ∆ = T − t = τ∗G and the inequality follows
by the construction of τ∗G. G’s payoff from not attacking when interim capacity is ct =
max{atT , G(ht, t)} is

(1− ct)
∆+1∑
t′=1

δt
′−1
G = (1− ct)

τ∗G+1∑
t′=1

δt
′−1
G .

If ct = 1, the value above is zero, and if ct = 0, the value above is strictly larger than G’s
payoff attacking, which is what we wanted to show.

Second, we show that T does not acquire capacity, in period t = T − τ∗G. To do this,
note that T will certainly not acquire capacity in any future periods t′ > T − τ∗G. So if T
acquires capacity in the current period t = T − τ∗G, it will be destroyed by an attack from
G (as argued in the above paragraph). So T ’s payoff from acquiring capacity is −κT . If T
does not acquire capacity, its payoff is 0.

For the induction step, consider t < T − τ∗G and suppose the claim holds true for all
t′ ∈ {t+ 1, . . . , T − τ∗G}. Fix ht ∈ Ht. Notice that T will not acquire capacity in any future
periods. Let ∆ = T − t denote the number of future periods. This is strictly larger than the
number of future periods in the basis step. As such, an identical logic demonstrates that G
will attack if and only if ct = 1. Therefore, T will never acquire capacity as it expects the
capacity to be immediately destroyed and never built in the future periods t′ > t.
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