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A Additional figures

Figure A.1: Empirical distribution of the number of GTD attacks in each month.
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Note: For each month, we count the number of attacks attributed to Fatah (left) and Hamas (right) in the GTD and
plot the distribution. The GTD is a standard source for recording terrorist acts, which are defined as either a threat
or an attack that meets two of the following conditions: occurs outside the confines of legitimate warfare; is designed
to signal to a larger audience than the immediate victims; and helps to attain a political, religious, or social goal
(START 2019a, 6). For Hamas, the mean is 1.5, median is 0, and range is 0–36. For Fatah, the mean is 0.2, median
is 0, and range is 0–15.

Figure A.2: Effects of competition on violence for all states s
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Note: We compare group i’s equilibrium probability of terrorism in state s to the probability that would arise if
i expects its rival to never use violence, by subtracting the latter from the former. Whereas Figure 5 graphs the
difference over time conditional on the observed relative popularity st, Figure A.2 shows the difference as a function
of all relative popularity levels s on the horizontal axis. Positive values indicate that competition increases violence
by group i in state s; negative values indicate that competition decreases violence by group i in state s. Rug plot
denotes observed states st.
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Figure A.3: Relationship between terrorism and value of support in observed states.
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Note: In each panel, we increase and decrease the magnitude of βi for i = H,F from its estimated value by 10%;
all other parameters are held constant at their estimated values. We use a procedure from Aguirregabiria (2012) to
account for the potential presence of multiple equilibria—see Appendix L for details. Incentives to compete are greater
when the value of support, βi, is larger in magnitude. The horizontal axis denotes the period/month t. The vertical
axis is the difference between equilibrium attack probabilities (Figure 3) and counterfactual attack probabilities given
the change in βi and observed state st. Positive (negative) values indicate that violence by group i increases (decreases)
in the counterfactual.
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Figure A.4: Relationship between terrorism and cost of attacking in observed states.
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Note: In each panel, we increase and decrease the magnitude of κi for i = H,F from its estimated value by 1%;
all other parameters are held constant at their estimated values. We use a procedure from Aguirregabiria (2012)
to account for the potential presence of multiple equilibria—see Appendix L for details. Incentives to compete are
greater when attack costs, κi, are closer to zero. The horizontal axis denotes the period/month t. The vertical axis
is the difference between equilibrium attack probabilities (Figure 3) and counterfactual attack probabilities given the
change in κi and observed state st. Positive (negative) values indicate that violence by group i increases (decreases)
in the counterfactual.
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B Numerical example

To illustrate the strategic tensions in the model, we pick hypothetical values for the

parameters and study the equilibria that arise. The specification is symmetric to aid in-

terpretation, but our model is more general. The popularity levels are S = {−S,−S +

1, . . . , S − 1, S} where S = 50. For the payoff parameters, we set βF = 1
500 = −βH and

κi = −2. For the transitions, we assume µ[at, st; γ] = st − atH + atF and σ = 2. In other

words, group i’s attacks shift the mean of tomorrow’s expected relative popularity by one

in its preferred direction. The current popularity level does not change the effectiveness of

attacks (γi,2 = 0).

To build intuition, Figure B.1 presents group i’s optimal attack probabilities when its

rival never attacks, i.e., when i is the only relevant group. The probabilities range from 0.1

to 0.2. Notice i is most likely to attack when its relative popularity is weak (small state

s for Fatah and large state s for Hamas), although end-point effects emerge because the

state space S is bounded. When the current state is at a boundary, one group’s popularity

cannot get worse, while the other’s cannot get better tomorrow. This decreases the groups’

incentives to attack. When a group is relatively unpopular, it has stronger dynamic benefits

from using costly attacks to increase its popularity: attacking increases i’s future payoffs

for some time and decreases its need to use costly attacks in the future. Thus, comparing

across the two single-agent problems, the groups generally attack in different states—the

correlation coefficient of their attack probabilities is ρ = −0.13.

Figure B.1: Attack probabilities without competition in the numerical example.
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Note: Left panel graphs the probability that Fatah attacks (y-axis) as a function of the states (x-axis) in its single-
agent dynamic programming problem, i.e., when Hamas never attacks. The right panel graphs the attack probabilities
for Hamas’s single-agent dynamic programming problem, i.e., when Fatah never attacks.

Turning to the strategic setting, we investigate equilibrium attack probabilities. To find

equilibria, we repeatedly compute solutions to Equation 7 (given the parameters in this

example) using the Newton-Raphson method and ten thousand different starting values.

After knowing the solutions to Equation 7, we use Equation 4 to compute each group’s
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probabilities of attacking. Overall, we found three different solutions to Equation 7 given

the fixed parameters in the symmetric example. Of course, additional equilibria might

exist within this numerical example. Moreover, equilibrium multiplicity is a feature of this

numerical example (i.e., the fixed parameters θ and γ above), but it is not a general feature

of the model. That is, under other parameters a unique equilibrium exists.1

Figure B.2: Computed equilibria in the numerical example.
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Figure B.2 graphs the attack probabilities for each of the three computed equilibria. In

the symmetric equilibrium, terrorism is most fierce when the groups are equally popular,

and group i attacks with the highest probability once it begins to be slightly more popular

than its rival. The other two equilibria are asymmetric but are essentially the same with the

actors and states flipped. In these equilibria, one actor (labeled dominant) is using violence

with higher probability than the remaining actor for the majority of the state space. Figure

B.3 graphs the invariant distribution for each of the three equilibria.

The example illustrates three features. First, violence between groups exhibits some

strategic complementarities: attack probabilities are positively correlated across states. In

the asymmetric equilibria, the correlation coefficient is ρ = 0.41, and in the symmetric

equilibrium it is ρ = 0.28. These complementarities do not arise through the group’s per-

period payoffs in Equation 1, because i’s per-period payoff does not depend on its opponent’s

action. In addition, the groups do not become more effective in certain states as γi,2 = 0.

Instead, the complementarities arise endogenously through tug-of-war dynamics in which

competition can increase violence. Indeed, group i’s attack probabilities in any of the three

equilibria are larger than those in its single-agent problem. Thus, our dynamic model can

1If βi = 0, then a unique equilibrium exists. To see this, when βi = 0, i’s only benefit from attacking
comes from the fixed costs κi and the iid shocks εi. Thus, i’s optimal attack probabilities will be constant
as a function of the state s and will not depend on the behavior of j. From the perspective of group j, they
are essentially facing a single-agent dynamic program, which has a unique solution.
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Figure B.3: Equilibrium invariant distributions in the numerical example.
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Note: The invariant distribution indicates how likely it is for the equilibrium path to visit each of the relative
popularity levels in the long run. The equilibrium path in an asymmetric equilibrium is more likely to visit popularity
levels that are favorable to the dominant (more violent) actor. In the symmetric equilibrium, the invariant distribution
is symmetric around zero. Spikes occur at the extreme values of the state space because the interaction can bunch at
high and low values due to relative popularity levels being bounded.

endogenize the strategic complementarities for violence found in previous analyses using

static games (Gibilisco, Kenkel and Rueda 2022).

Second, these complementarities are moderate, i.e., the attack probabilities are not

perfectly correlated. In all equilibria, the state in which Hamas is most likely to attack is

strictly less than the state in which Fatah is most likely to attack. This arises because, all else

equal, Hamas wants to exert costly effort to attack at popularity levels where becoming more

popular (decreasing the state variable) reduces Fatah’s likelihood to attack and vice versa.

In contrast, Fatah wants to attack at levels where becoming more popular (increasing the

state variable) reduces Hamas’s likelihood to attack. These incentives temper the potential

strategic complementarities in the model.

Third, equilibrium rates of attacks are not perfect measures of competitive incentives.

Consider the Fatah-dominant equilibrium. At the majority of popularity levels, Fatah

is attacking with greater probability than Hamas, so one might conclude that Fatah has

smaller attack costs or a greater value of popularity. The example is symmetric, however,

and both groups have identical competitive incentives. Thus, incentives to compete do not

directly map onto observed rates of violence as the relationship is mediated by a strategic

interaction. As a result, reduced-form regressions using observed terrorism as the dependent

variable may obscure some aspects of the outbidding process. Directly estimating the

model’s parameters and equilibrium allows for a deeper exploration of how competition

affects violence.

Figure B.4 graphs comparative statics to illustrate how changes in competitive incentives

can affect violence. In this symmetric example, we find that increasing Hamas’s value for

public support can increase, decrease, or have mixed effects on each actor’s willingness
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Figure B.4: Comparative statics in the numerical example.
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Note: We increase and decrease Hamas’s value of popularity, βH , from the baseline numerical example, where
βH = −0.002, using a procedure from Aguirregabiria (2012) to account for the presence of multiple equilibria—
see Appendix L for details. All other parameters are held fixed. The horizontal axis is the relative popularity levels
(smaller values are more favorable to Hamas) and the vertical axis is the probability of an attack. Columns correspond
to the equilibrium and rows denote which group’s probability of attacking is graphed. Darker red denotes stronger
incentives to compete, i.e., βH is more negative.

depending on the equilibrium.2 These mixed comparative statics motivate fitting this model

to data as it is not clear what parameter values or equilibrium are empirically relevant.

Overall, the example illustrates that enhanced incentives to compete can either increase or

decrease overall violence levels, raising two questions: Which effect dominates in the data?

Do these effects vary across groups?

To conclude this section, a remark is in order: for several reasons, it is not possible

to map the three equilibria in Figure B.1 to potential equilibria in the estimated model.

As stated above, the model can have a unique equilibrium under some specifications. Fur-

thermore, this example is symmetric but the fitted model is asymmetric. It is therefore

unlikely a symmetric equilibrium exists in the fitted model. Moreover, the substantive la-

bels given to the equilibria only make sense when comparing across equilibria. For example,

the equilibrium in the left panel of Figure B.1 is Fatah-dominant because Fatah is using

more violence than Hamas and other equilibria exists in which either the groups use equal

2We use a procedure from Aguirregabiria (2012) and Crisman-Cox and Gibilisco (2018) to conduct
counterfactuals in the presence of multiple equilibria—see Appendix L for details.
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Table C.1: Survey questions and frequency.

Source Question Frequency

JMCC “Which political or religious faction do you trust the
most?”

2-6 times/year

PCPSR “Which of the following political parties do you sup-
port?”

2-9 times/year

JMCC “If Legislative Council elections were held today,
which party would you vote for?”

0-5 times/year starting
in 2006

levels of violence or Hamas uses more violence than Fatah. Systematically comparing be-

havior across equilibria is generally impossible given our model, however. Doing so requires

computing the set of equilibria, which is equivalent to finding all solutions to Equation 7.

Equation 7 is a system of 4K nonlinear equations. Computing all solutions is only feasible

when K is small enough so that grid searching is feasible or when the system satisfies others

properties, e.g., it is polynomial.3

C More details on the survey data and dynamic factor model

Table C.1 lists the wordings of each survey question and the frequency at which it was

asked. To illustrate, Figure C.1 presents screenshots of two polls that we record. For the

JMCC, the August 2015 poll breaks down trust by geographic region, although not all

JMCC polls do this. For the PCPSR, the December 2006 poll also breaks down support

by geographic region, where the columns are, from left to right, are total, West Bank, and

Gaza. In this PCPSR poll, there are 1270 adults: 830 in the West Bank and 440 in Gaza.

Figure C.2 shows how the aggregate survey responses vary between Gaza and the West

Bank. The correlation coefficients summarize the graphs: attitudes toward each group are

highly correlated across geographic areas. One noticeable pattern is that both groups are

generally more popular in Gaza than in the West Bank although Hamas seems to get a larger

boost. Also, in some months, the percentage for the entire survey is outside the interval

for the percentages in the West Bank and Gaza, e.g., trust in Fatah in September 1995,

a theoretical impossibility. In these months, the individual survey does not report break

down averages by geographic area, and the impossibility is a result of the liner interpolation

in Figure C.2.

Table C.2 shows the raw correlations between pairs of survey questions using the entire

sample of respondents (i.e., both West Bank and Gaza). Fixing a group, trust and support

are highly correlated (0.69 and 0.77 for Hamas and Fatah, respectively). Likewise, support

3In finite, normal-form games, the set of Nash equilibria can be represented as the set of solutions to a
system of polynomial equations and inequalities, so tools exist to compute all equilibria, although this can
still be computationally intensive. See Herings and Peeters (2010) for a recent discussion. Gibilisco and
Montero (2022) exploit these properties and tools in their structural analysis of major-power interventions
into civil war to compare effects of equilibrium selection. These tools are not applicable in our environment
given that we are using private-information payoff shocks to rationalize the data, however.
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Figure C.1: Examples of public opinion polls.

(a) JMCC: August 2015

(b) PCPSR: December 2006

for one group is negatively correlated with support for the other. The remaining correlations

are almost all in the expected directions, suggesting that the population does in fact trade off

among supporting these two leading actors. The only exceptions are the negative correlation

between voting for and supporting Fatah and the positive correlation between supporting

Fatah and voting for Hamas. However, trust in Fatah correlates highly with both supporting

and voting for Fatah, while voting for Hamas correlates highly with support and trust in

Hamas.

To produce the latent state variable, we first let yt be the column vector denoting the

6 survey values at time t such that

yt =



% of Population that trusts Fatah

% of Population that trusts Hamas

% of Population that supports Fatah

% of Population that supports Hamas

% of Population that plans to vote for Fatah

% of Population that plans to vote for Hamas



t

. (C.1)

Let zt denote the vector of z-transformed surveys, where for survey j = 1, . . . , 6, ztj =
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Figure C.2: Survey responses and geographic areas.
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Note: We graph survey responses over time broken down by geography. The both category is the aggregate survey
results in Figure 1. We also report the correlation coefficient between the local survey responses and the aggregate
ones in each panel.

ytj−ȳj√
Var(yj)

. We construct a continuous state variable s̃t as a function of past terrorist attacks

and past population support using the dynamic factor model given by

zt = s̃tω + ξt, (C.2)

and

s̃t = ρs̃t−1 + α0 + at−1
H · αH + at−1

F · αF + ηt. (C.3)

Here, at−1
F and at−1

H record attacks by Fatah and Hamas, respectively while the αF and αH

weights the impact of those attacks. Including the attacks in the measurement of st reflects

the strategic interdependence between the future states and today’s actions as represented

in Equation 3. Note that simply including attacks in the measurement model does not
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Table C.2: Correlations among survey responses.

Trust in Trust in Support for Support for Vote for Vote for
Hamas Fatah Hamas Fatah Hamas Fatah

Trust in Hamas 1.00 −0.19 0.77 −0.43 0.98 −0.72
Trust in Fatah −0.19 1.00 −0.27 0.67 −0.54 0.92

Support for Hamas 0.77 −0.27 1.00 −0.57 0.89 −0.83
Support for Fatah −0.43 0.67 −0.57 1.00 0.56 −0.32

Vote for Hamas 0.98 −0.54 0.89 0.56 1.00 −0.73
Vote for Fatah −0.72 0.92 −0.83 −0.32 −0.73 1.00

presuppose their relationship in the first-stage regressions below. The αi parameters can

take on any value, including zero. Likewise, α0 is a constant term, ω is a length-6 column

vector of factor weights, and ρ is an AR(1) term on the state variable. Finally, ηt ∼ N(0, 1)

and ξt ∼ N(0,1) are random perturbations, where 1 is the identity matrix.

The parameter vector Θ = (ω, ρ, α) can be estimated using maximum likelihood using

the MARSS package for R (Holmes, Ward and Scheuerell 2018). Starting with an initial guess

of the parameters Θ̂1, the estimator relies on the following EM for iteration k:

1. Expectation step: Generate expected values of s̃t using a Kalman filter and current

givens Θ̂k, zt, and at−1. During this step missing values in zt are also imputed by a

Kalman filter.

2. Maximization step: Using the generated values of s̃t and imputed zt, maximize the

multivariate normal log-likelihood. This step outputs Θ̂k+1

3. Repeat the EM steps until no improvement in the log-likelihood is gained.

Table C.3: ML estimates for the factor model.

Equation Variable Estimate

Factor Weights (ω) Trust in Hamas -0.09
Trust in Fatah 0.06
Support for Hamas -0.11
Support for Fatah 0.10
Vote for Hamas -0.07
Vote for Fatah 0.07

AR(1) term (ρ) Lagged DV 0.99

Additional inputs (α) Constant -0.01
Hamas attack -0.28
Fatah attack 1.05

The estimates of (ω, α) are reported in Table C.3, while the estimates of s̃t are presented

in Figure 2 in the main text. Notice that the observed indicators all load onto the dynamic
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factor in the expected direction: pro-Hamas responses have negative weights and pro-Fatah

responses have positive weights.

We also consider the robustness of this measurement model by comparing the estimated

states s̃t from the following models.

1. Main specification (described above)

2. Fix ρ = 1. Modify Eq. C.3 s.t.

s̃t = s̃t−1 + α0 + at−1
H · αH + at−1

F · αF + ηt.

3. Estimated and homoskedastic variance in ξt. Modify Eq. C.2 s.t. ξt ∼ N(0, σ2
ξ1).

4. Estimated and heteroskedastic variance. Modify Eq. C.2 s.t. ξt,j ∼ N(0, σ2
ξ,j1), where

j = 1, . . . , 6 indexes surveys

5. A model with α = 0. Modify Eq. C.3 s.t.

s̃t = s̃t−1 + ηt.

6. Remove the “plans to vote for” surveys (which start later than the other four). Modify

yt and zt to only contain the first four survey responses.

7. Using only survey data from the Gaza Strip

8. Using only survey data from the West Bank

Note that each of the robustness checks considers one change to the main specification

(i.e., these are not cumulative changes to the factor analysis). Fitting these models gives

us eight specifications, each of which produces its own estimate of our continuous measure

of relative popularity s̃t. In Table C.4 we present the correlation matrix of these different

approaches. Overall, we see that these methods all produce remarkably similar estimates.

The biggest difference from the main model comes from heteroskedastic version, where a

separate variance term is estimated for each of the six surveys. However, the correlation here

is still roughly 0.9. As such, we conclude that these deviations from the main specification

result in little change to s̃t.

Of special note are Models 7 and 8. Here we consider the two Palestinian regions

separately rather than just looking at the overall support across the two territories. In

the former, we only track the polling results from Gaza, while in the latter we only use

results from the West Bank. Overall, the underlying survey answers across these two areas

correlate highly and tend to track each other, as in Figure C.2. These similarities appear

in the measurement step as well. State variables measured using only Gaza or West Bank

opinion both correlate with the main specification at about 0.99. This similarity gives us

additional confidence that using the overall-combined opinion data is reflective of overall

Palestinian support and not covering up or removing interesting regional variation.
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Table C.4: Correlations across measurement model specifications.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Model 1 1.00 1.00 0.99 0.87 1.00 0.99 0.99 0.99
Model 2 1.00 1.00 0.99 0.86 0.99 0.99 0.99 0.98
Model 3 0.99 0.99 1.00 0.88 1.00 0.98 0.97 0.99
Model 4 0.87 0.86 0.88 1.00 0.88 0.91 0.87 0.84
Model 5 1.00 0.99 1.00 0.88 1.00 0.99 0.98 0.99
Model 6 0.99 0.99 0.98 0.91 0.99 1.00 0.99 0.97
Model 7 0.99 0.99 0.97 0.87 0.98 0.99 1.00 0.95
Model 8 0.99 0.98 0.99 0.84 0.99 0.97 0.95 1.00

D First-stage robustness

In this appendix, we consider the robustness of the first-step estimates (Table 1) to

additional control variables (Table D.3), changes in how we measure attacks (Table D.4),

and endogeneity concerns (Table D.5).

D.1 Control variables and specification choices

We want to ensure that the relationship between attacks and relative popularity is not

driven by alternative factors. Our first concern is to ensure that the γ estimates are robust

to some specification choices such as the decision to include or exclude the state-action

interactions or to the possibility of time-varying effectiveness of each group’s ability to

use terrorism. Additionally, we want to be sure that variables omitted from the first-step

AR-1 model, such as attitudes about violence against Israelis, Israeli aggression, or other

economic and political factors, are not biasing our estimates of the transition parameters,

γ. To measure attitudes and economic factors, we return to the surveys and use additional

dynamic factor models to build latent variables that capture Palestinian attitudes about

violence towards Israelis and their employment status. The other controls that we consider

are directly measurable.

For the two latent variables (describing attitudes toward violence and unemployment),

we again aggregate survey data using dynamic factor models. Both models use the same

basic specification described in Equations C.2 and C.3, but with different surveys forming

zt and as such a different latent variable output (i.e., ṽt and ũt for attitudes for violence

and unemployment, respectively rather than s̃t). For attitudes towards violence, we use

survey questions that record 26 different responses to various aspects of the conflict/peace

process. From the surveys run by JMCC we include:

• 4 responses about attitudes to a two-state solution

• 2 responses about attitudes towards peace negotiations

• 2 responses about attitudes towards military operations against Israeli targets

• 2 responses about attitudes towards suicide bombings against Israeli civilians
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• 4 responses about optimism/pessimism regarding a peaceful settlement with Israel

• 3 responses about attitudes towards the Oslo peace process

• 2 responses about attitudes towards the 2nd Intifada

• 3 responses about whether the current peace process is alive, dead, or unclear.

Additionally, we add 4 responses from surveys by PCPSR that record support for armed

attacks against

• Israel generally

• Israeli civilians

• Israeli soldiers

• Israeli settlers in the West Bank.

Many of these variable are correlated. We avoid perfect correlations between combinations

of factors by the virtue of “don’t know,” “no answer,” and similar non-answers. The

high correlations across answers and across questions provide strong evidence that these

responses can be reduced into a latent measure. The factor weights are reported in Table

D.1. All the surveys load in the expected way where surveys that should correlate with

approval towards violent tactics load positively and surveys that correlate with approval

of peaceful tactics and negotiated settlement load negatively. Overall, this give us strong

assurance that the latent variable captures the Palestinian public’s underlying attitudes

toward violence against Israel at any given month.

For the unemployment latent variable we combine four survey responses:

1. % of respondents telling pollsters they are unemployed to JMCC pollsters

2. % of respondents telling pollsters they are unemployed to PCPSR pollsters

3. Estimated true unemployment by PCPSR

4. Unemployment rate reported in Labor Force Surveys published by the PCBS

The results from the dynamic factor analysis measuring unemployment are reported in

Table D.2. Here we see that all the unemployment rates load onto the latent dimension in

the same direction, but with different weightings.

The robustness checks that include more covariates or change model specification are

reported in Table D.3 (which should be compared to Table 1 in the main text). The

main thing to note is that the effects of attacks on relative popularity are similar across

all specifications. In Model 1, we show that our conclusions persist even when we do not

control for state-attack interactions.

In Model 2, we want to justify the time-invariant estimation of each group’s ability to use

terrorism to shift public opinion. It is reasonable to suspect that each side’s ability to outbid

may shift over time, and we want to know if our time-invariant specification fits the data.
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Table D.1: ML estimates for latent support for violence.

Variable Est.

% Supporting two-state solution -0.14
% Supporting a one shared state solution 0.02
% Supporting a one Islamic state solution 0.14
% Saying there is no solution 0.13
% Supporting a peace process -0.16
% Opposing a peace process 0.16
% Supporting military action against Israel 0.16
% Opposing military action against Israel -0.16
% Supporting suicide bombings 0.16
% Opposing suicide bombings -0.16
% Very optimistic about peace -0.15
% Optimistic about peace -0.15
% Pessimistic about peace 0.12
% Very pessimistic about peace 0.16
% Strongly support Oslo -0.11
% Support Oslo -0.10
% Oppose Oslo 0.13
% Support the Intifada 0.09
% Oppose the Intifada -0.08
% Who think peace is dead 0.09
% Who think the peace process is stalled -0.02
% Who think peace is alive -0.12
% Support armed attacks generally 0.16
% Support armed attacks against civilians 0.15
% Support armed attacks against soldiers 0.12
% Support armed attacks against settlers 0.11

Note, that the interactions of lagged attacks and lagged states in the main models allow for

some heterogeneity in each group’s ability estimates. Over the range of the state variables

we find little evidence for strong heterogeneity. To directly check for time-varying effects in

each group’s effectiveness, we interact a linear time trend with the main attack variables.

Here we see that the main point estimates do not change much. Additionally, while we see

slight evidence to suggest that both groups are getting more effective over time, neither of

these interaction terms is statistically significant. A Wald test fails to reject the joint null

hypothesis that both interactions are zero. Overall, this provides reasonable evidence that

the time-invariant effectiveness imposed by the main model is not doing too much violence

against the data.

In Models 3 and 4, we add in the latent variables for economic and attitudes about

violence, respectively. Unsurprisingly, as the Palestinian public becomes more accepting of

violence, there is a shift in popularity toward Hamas. Likewise, poor economic conditions

favor Hamas’s popularity. In Models 5 and 6, we consider some political context with an
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Table D.2: ML estimates for latent unemployment conditions.

Variable Est.

Self reported unemployment rate (JMCC) 0.15
Self reported unemployment rate (PCPSR) 0.16
Estimated unemployment rate (PCPSR) 0.06
Estimated unemployment rate (PCBS) 0.17

indicator for whether the Second Intifada is ongoing and the time since the last Israeli

election. Finally, in Model 7, we control for the logged number of Palestinian fatalities due

to Israeli forces, as recorded by B’Tselem, an Israeli human rights organization, to proxy

for aggression by the Israeli government against Palestinians.4 Across these models we see

only small changes in the main estimates. The biggest shift occurs in the last model, which

is unsurprising given the reduction in sample size.

D.2 Measurement of the actions

Next, we want to ensure that our results are not dependent on our binary coding of

attacks or the type of attacks considered. Regarding the former, we consider four alternative

measurements for attacks: counts, binary with fatalities as a control, only fatalities, and

fatalities per attacks. These are the first four models in Table D.4. In these models, the

main results survive: (i) violence by actor i makes i more relatively popular in the following

month and (ii) the effects of Fatah’s violence are larger in magnitude than the effects of

Hamas’s violence.5

Regarding the latter, in the last two models in Table D.4, we use the GTD’s attack

target information to subset the attacks into two different types: attacks against civilians

or not, where the latter category includes attacks against the military, government, or a

non-state actor. Here again we find that Fatah attacks are more effective at boosting public

opinion than Hamas attacks regardless of the type of attack. The overall consistency across

the six model specifications is reassuring as we do not want the first stage to be dependent

on the specific measure of violence. Overall, these various robustness checks of the AR(1)

model from Table 1 provide confidence in our using it in the first stage of the analysis as

the estimates of γ.

D.3 Instrumental variable analysis

The final set of robustness checks considers the potential endogeneity of attack decisions.

While we attempt to address some of these concerns with the control variables above,

4Data are only available after the start of the Second Intifada, which explains why Model 6 has fewer
observations than other models in the table.

5The only circumstance where we fail to reject the null of equally effective groups is when s̃t < −9 and
we consider the measures in Models 1, 3, and 4 from this table. So if Hamas is extremely popular (about 5%
of the data), the two groups might be equally effective at moving their relative popularity level according to
some of these alternative specifications.
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we understand that there may be additional unobserved confounders or other forms of

endogeneity bias that may affect the estimates of γ. There are four potentially endogenous

variables we need to consider: Hamas attacks, Fatah attacks, and the interactions of attack

choices with the lagged state variables. We follow the research design proposed in Köning

et al. (2017) and consider deviations from average rainfall in the West Bank and Gaza

Strip as plausible instrumental variables (IVs) for Hamas and Fatah attack decisions. We

also interact these rainfall variables with an additional lag of the state variable (continuous

relative popularity) to instrument for the interaction terms. Of course, there has been a lot

of push back against the idea of using rainfall as an instrument (e.g., Mellon 2022; Sarsons

2015), but it remains a standard instrument in the political economy of conflict literature

(e.g., Brückner and Ciccone 2011; Miguel, Satyanath and Sergenti 2004). The goal of this

section is to illustrate that our baseline estimates of γF,1 and γH,1 in Table 1 are similar

in size and magnitude to those from when we use extreme rainfall as an instrument on the

groups’ attack decision. This gives us greater confidence in using those estimates moving

forward to the second stage in which estimate the groups’ payoff parameters.

Extra heavy rainfall in the West Bank (Gaza), we suspect, reduces Fatah’s (Hamas’s)

propensity to attack in the following month, while perhaps raising Hamas’s (Fatah’s) will-

ingness to attack as they may see an opportunity to attack without a response. This re-

duction in attacks can come from either inclement conditions discouraging attacks directly

or changes in the local agricultural market making terrorism a less attractive option for

potential recruits (Köning et al. 2017). The validity of the instrument depends on rainfall

only affecting the relative popularity of the two groups through their attack decisions, and

it is difficult to imagine other ways in which rain would directly shift the relative popularity

of these groups. The main threat to validity would be any effect that flows from rainfall to

the economic conditions and from there to relative popularity of the actors. As such, we

also consider models using the control variables from Table D.4, which includes Palestinian

unemployment.

To measure rainfall, we use data from Global Precipitation Climatology Centre (GPCC)

as provided by the NOAA Physical Science Lab (Schneider et al. 2020). These data provide

monthly rainfall totals on a 0.25 × 0.25 spatial grid. We aggregate these for the Gaza

Strip and West Bank separately and record how many standard deviations each observed

month is from the historical average rainfall for that month. These data are lagged one

month behind the attack variables and interacted with the second lag of the state variable

to instrument for the state-action interactions.

We also acknowledge that rainfall is likely to be a weaker instrument here than in other

contexts for two reasons. First, the small size of Israel means that our two instruments

are correlated. Deviations from monthly average rainfall in the Gaza Strip and the West

Bank have a correlation coefficient of 0.89. In comparison, Köning et al. (2017) study

the Democratic Republic of Congo and use the yearly average of rainfall in each group’s
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homeland as an instrument for the group’s propensity to attack. The Democratic Republic

of Congo is more than 100 times the size of Israel; it is 400 times the size of Palestine.

As such, there is not as much variation in weather conditions across the two regions in

our context. Second, a key mechanism connecting rainfall to violence is opportunity costs:

extreme weather depresses agricultural productivity and therefore decreases the reservation

wages that would be derived via agricultural activities. This makes it more difficult for

groups to recruit. It is unclear how prominent this mechanism is in the Palestinian case,

however. On the one hand, agriculture makes up a small percentage of Palestinian GDP,

ranging from 10% in 1999 to 5% in 2010 according to the Center for Economic and Policy

Research (CEPR) (2012). With such a small proportion of the formal economy devoted to

agriculture, it could be the case that rainfall only has weak effects on the opportunity costs

of violence. On the other hand, agriculture makes up an important part of the informal

economy. According to the CEPR (2012), 13.4% of the labor force and over 90% of all

informal employment is absorbed by the agricultural sector. Nonetheless, it is difficult to

get reliable estimates of the size of the informal economy (Shabaneh 2008), although Awad

and Alazzeh (2020) estimate it to be 28% of Palestinian GDP in 2010.

As an additional instrumental variable we also consider an indicator for whether Pales-

tinian Islamic Jihad (PIJ) attacks, lagged a month behind Fatah and Hamas attack decisions

and measured from the GTD. This variable leads to stronger first-stage relationships, al-

though we are likely still dealing with a weak instrument. For validity, it must be the case

that PIJ attacks only affect the relative popularity between Hamas and Fatah through their

own attack decisions. In this context it means that a Palestinian citizen, upon observing

an attack from the PIJ, does not update their relative preferences between Hamas and Fa-

tah unless one of those actors also decided to commit violence.6 Including this additional

instrument allows for overidentification tests which provide some evidence of instrument

validity.

The structural equation is the ECM form of Eq. 8, given as

s̃t− s̃t−1 = γ0+ γ̃1(s̃
t−1− s̃t−2)+γH1a

t−1
H +γH2(s̃

t−1×at−1
H )+γF1a

t−1
F +γF2(s̃

t−1×at−1
F )+ξt.

Let yt = (at−1
H , at−1

F , s̃t−1×at−1
H , s̃t−1×at−1

F )′ be the column vector of endogenous variables,

then the first-stage equations are given as

yt = π0 + π1(s̃
t−1 − s̃t−2) +

L∑
ℓ=2

(
πℓr

t−ℓ + πℓ+L−1(r
t−ℓ × s̃t−2)

)
+

M∑
m=2

λm−1a
t−m
P + ζt,

where r denotes the extreme rainfall measure and aP denotes the PIJ attack indicator.

6We can think of this as a kind of independence of irrelevant alternatives assumption. In this sense it
matches the identification assumptions used in multinomial logit models of group support (e.g., Jaeger et al.
2015).
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Additionally, each parameter and the error term ζt are length-four column vectors. For the

five models, presented in Table D.5, we have L = 2 in Models 1-4 and L = 5 in Model 5.

Likewise, λ = 0 in Models 1 and 3, M = 2 in Models 2 and 4, and M = 5 in Model 5. The

additional controls enter both the structural and first-stage equations and instrument for

themselves.

Table D.5: Robustness checks for the first-stage model: Time effects and endogeneity.

Dependent variable:

∆ State

(1) (2) (3) (4) (5)

Hamas attacks −0.16 −0.17 −0.23 −0.26 −0.24
(0.19) (0.20) (0.16) (0.20) (0.18)

Fatah attacks 1.39 1.62 1.36 1.80 1.69
(0.64) (0.66) (0.51) (0.59) (0.79)

Constant −0.02 −0.04 0.11 0.08 0.08
(0.07) (0.08) (0.03) (0.05) (0.04)

Interactions Yes Yes Yes Yes Yes
Controls No No Yes Yes Yes
T 298 298 298 298 295
σ̂ 0.229 0.240 0.185 0.241 0.253
Cragg and Donald statistic 0.001 0.316 0.001 0.418 0.983
Number of instruments 4 5 4 5 20
Sargan-Hansen p value 0.758 0.652 0.140

Note: Estimates from Fuller’s k estimator with parameter 1. Bekker’s robust standard errors (IV models)
in parentheses

To consider the strength of the instruments we look at both the first-stage F statistics

and the Cragg-Donald statistics, which is a multivariate measure of instrument strength

when there is more than one endogenous variable. For the models using only rainfall,

the first-stage F statistics range from about 0.2 to 3.4, which is quite weak. Likewise,

rainfall seems to do better at predicting Hamas attacks than Fatah attacks, with extreme

rain in Gaza reducing the probability that Hamas attacks the following month. Adding in

PIJ attacks improves these F statistics so that they range from 0.5 to 4.5. Additionally,

while the instruments are still stronger for Hamas attacks we can note that a PIJ attack

is a positive and statistically significant predictor of both Hamas and Fatah attacks in the

following month. Additionally, the Cragg-Donald statistics suggest that the instruments

are much stronger when PIJ attacks are included.

While these values suggest that there are first-stage relationships here, the values are

overall low. When weak instruments are present, two-stage least squares (2SLS) estimation

of the IV model can be biased toward OLS even in large samples. In contrast, k-class

estimators like the limited information maximum likelihood (LIML) estimator are less biased
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in overidentified models with weak instruments but this comes at the cost of fatter tails and

an increased IQR in the sampling distribution. To make the best of our weak instruments

we use a Fuller estimator that modifies the regular LIML estimator in a way that usually

reduces both bias and mean-squared error (Stock and Yogo 2005). Likewise, Stock, Wright

and Yogo (2002) show that the rule-of-thumb first-stage F statistics can be much lower for

the Fuller estimator (relative to 2SLS) to reduce the estimator’s bias relative to the bias

from OLS, although they don’t provide any critical or suggested values for the case of four

endogenous regressors. For this set of models we use Bekker standard errors which are

consistent in the face of heteroskedasticity and many weak instruments (Bekker 1994).

To take advantage of the weak instrument asymptotics of the Fuller estimator, we fit

an additional model that uses the rainfall deviations for the four months before the attack

decision along with their interactions with the state variable. Likewise, this model also

uses PIJ attack indicators for four months prior to the attack decision for a total of 20

instruments.

The IV estimates are presented in Table D.5; these estimates should be compared to

those the first two rows of Table 1 in the main text. Models 1 and 2 have no additional

control variables, while Models 3-5 use the same controls as the models in Table D.4.

We generally see that the main estimates largely agree with the main models in terms of

direction and magnitude. Likewise, Fatah is still more effective than Hamas at using attacks

to increase it relatively popularity. The fact that the estimates remain largely unchanged

as we increase the number of instruments is good news given that the Fuller estimator is

consistent in the number of weak instruments. Additionally, with the overidentified models

we can use Sargan’s test of the null hypothesis that the instruments are valid. We fail to

reject this null.

E Identification

With K states (ordered s1, . . . , sK) and two actions, each actor i has 4K possible pay-

offs to consider. Adopting notation from Pesendorfer and Schmidt-Dengler (2008), let

πi(sk, ai, aj) denote the systematic component of i’s per-period payoff for choosing ai in

state sk when its opponent takes action aj . We can collect these payoffs into 4K×1 matrix

of individual state-action payoffs

Πi =


πi(sk, 0, 0)

πi(sk, 0, 1)

πi(sk, 1, 0)

πi(sk, 1, 1)


K

k=1

.

As noted in the main text, Proposition 2 from Pesendorfer and Schmidt-Dengler (2008)

tells us that at most we can identify K payoffs. To identify up to K parameters, we need
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to impose at least 3K restrictions on i’s payoffs. Consider the following 3K restrictions:

πi(sk, 0, 0)− πi(sk, 0, 1) = 0 for k = 1, . . . ,K

πi(sk, 1, 0)− πi(sk, 1, 1) = 0 for k = 1, . . . ,K

πi(sk+1, 0, 0)− 2πi(sk, 0, 0) + πi(sk, 1, 0) = 2dβi + κi for k = 1, . . . ,K − 1

πi(s1, 1, 0)− πi(s1, 0, 0) = κi.

The first two sets of restrictions reflect the fact that neither side considers its opponent’s

action within its utility function.7 The third set of restrictions maps the unconstrained

payoffs into part of the linear-in-the parameters utility function to capture the difference in

utility for a change in both state and action. The last restriction considers actions within

a state to separate κi from βi. These last two lines formalize some of the intuition from

the main text: identification of βi depends on variation in both attacks and states, while

variation in actions within a state separates κi from βi.

The restrictions are all linear and can be written in matrix form as

RΠi = ri.

Here R is the matrix of numeric constants that impose the above restrictions on the payoffs.

In addition to the necessary conditions given by Pesendorfer and Schmidt-Dengler (2008)

in Proposition 2, we can also verify a sufficient condition for identification of θ, which they

provide in their Proposition 3. The condition depends on the restrictions matrix R and

some indifference conditions that are functions of the equilibrium choice probabilities. The

result says that given an equilibrium, a distribution of action-specific payoff shocks, and

a discount factor, if a rank condition holds, then the payoff parameters are identified. To

verify the condition for player i, we need the following matrices where j ̸= i:

Pi︸︷︷︸
K×4K

=


pij(s1) 0 0

0
. . . 0

0 0 pij(sK)



7Note that the above reflects a minimal set of linear restrictions to identify K parameters per player.
We seek to identify only 2 and impose a total of 4K − 1 payoff restrictions in estimation.
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where

pij(sk) =


P (0, sk; vi)P (0, sk; vj)

P (0, sk; vi)P (1, sk; vj)

P (1, sk; vi)P (0, sk; vj)

P (1, sk; vi)P (1, sk; vj)


′

,

Pj︸︷︷︸
K×2K

=


P (0, s1; vj) P (1, s1; vj) 0 0

0
. . .

. . . 0

0 0 P (0, sK ; vj) P (1, sK ; vj)

 ,

and

P∗︸︷︷︸
K×4K

=
[
−Pj Pj

]
.

We also need the matrix

Xi︸︷︷︸
K×4K

= P∗ + δP∗Γ (IK − δP∗Γ)−1Pi,

where Γ is the 4K × K matrix of Markov transition probabilities, and IK is an identity

matrix of sizeK. Note thatXi depends on the equilibrium values v, the first-stage transition

parameters γ, the discount factor δ, and the distributional assumption on the action-specific

shocks ε, but not the payoff parameters β and κ. Pesendorfer and Schmidt-Dengler (2008)

show that Xi can be used to characterize indifferent types of player i, and they further show

that a sufficient condition for the identification of player i’s payoff parameters is the full

rank of the square matrix

[
Xi

R

]
. We verify that this rank condition holds at the estimated

equilibrium v̂, fixed discount factor δ, and first-stage estimates γ̂ for both Fatah and Hamas,

thus satisfying the sufficient identification conditions.

E.1 Identification intuition

To follow up on the above analysis, we also want to briefly sketch how βi and κi are

separately identified from each other within a given equilibrium. Fix an equilibrium v and

first-stage parameters γ. Now consider two separate solutions to the CMLE’s constrained

optimization problem θ = (β, κ) ̸= θ′ = (β′, κ′) with associated Lagrange multipliers λ and

λ′. Since these are both solutions to the CMLE problem, then both (θ, v, λ) and (θ′, v, λ′)
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solve the first order conditions of the CMLE’s Lagrangian L(θ, v, λ; γ) such that

∂

∂(v, θ)
L(θ, v, λ; γ) = ∂

∂(v, θ′)
L(θ′, v, λ′; γ) = 0

∂

∂λ
L(θ, v, λ; γ) = ∂

∂λ′L(θ
′, v, λ′; γ) = 0

V(v; θ, γ)− v = V(v; θ′, γ)− v = 0.

Where this last line is the first-order condition with respect to the Lagrange multipliers. In

words, this last line tells us that both θ and θ′ have to satisfy the equilibrium constraint

given the fixed v since they are both solutions. Note that θ only enters V through the utility

function, so this further simplifies to[
ui(ai, s; θ)

]
i∈{F,H},(ai,s)∈{0,1}×S

=
[
ui(ai, s; θ

′)
]
i∈{F,H},(ai,s)∈{0,1}×S[

sβF + κFaF

sβH + κHaH

]
(ai,s)∈{0,1}×S

=

[
sβ′

F + κ′FaF

sβ′
H + κ′HaH

]
(ai,s)∈{0,1}×S[

(βF − β′
F )s+ (κF − κ′F )aF

(βH − β′
H)s+ (κH − κ′H)aH

]
(ai,s)∈{0,1}×S

= 0.

At this point, standard results from linear models apply. Since s and aF are linearly

independent, the only solution to the Fatah equations is (βF , κF ) = (β′
F , κ

′
F ) and likewise

for H (contradicting the assumption that θ′ ̸= θ).

Another way to see this is to rewrite the above such that[
s

s

]
=

aF
κ′
F−κF

βF−β′
F

aH
κ′
H−κH

βH−β′
H


(ai,s)∈{0,1}×S

.

Note that these equalities imply that the state variable is a fixed proportion of the two action

variables and thus linearly dependent on both. Since s and ai are linearly independent, we

have reached a contradiction.

F Standard errors and sensitivity analysis

In this appendix, we describe the standard errors reported for the two-step CMLE esti-

mates and consider how sensitive the estimates of βi and κi are to the first-stage estimates

γ. The standard result on two-step estimation involving a maximum likelihood estimator

comes from Murphy and Topel (1985). To use these results the way we do, we need the

first-step estimates of γ̂ to be normally distributed. This is not guaranteed because of the

unit root estimated in the AR-1 model. To check for normality in the errors, we use the

Kolmogorov-Smirnov nonparametric test and the Jarque-Bera moment-based test on the

residuals ν̂t. Specifically, we use a parametric bootstrap to simulate the sampling distribu-
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tion of γ̂; we then use the same tests to test for normality for each estimated γ. In every

case we fail to reject the null hypothesis of normality, which provides us with confidence in

constructing two-step standard errors in this way.

Aguirregabiria and Mira (2007, Proposition 1) use Murphy and Topel’s (1985) result to

describe the asymptotic distribution of the two-step pseudo-likelihood estimator from Hotz

and Miller (1993) and we follow the same approach here. Specifically, let θ2 = (β, κ, v) be

the set of parameters estimated in the second stage, then the two-step correction gives the

variance of θ̂2 as

v̂ar(θ̂2) = Σ̂θ2 + Σ̂θ2

(
Ω̂Σ̂γΩ̂

T
)
Σ̂θ2 .

Here Σ̂θ2 is the CMLE covariance matrix based on the bordered Hessian as described by

Silvey (1959) which is

Σ̂θ2 =

[
Hθ2L(v̂|Y ) + Jθ2V(θ̂2; γ̂)

T
Jθ2V(θ̂2; γ̂) − Jθ2V(θ̂2; γ̂)

T

−Jθ2V(θ̂2; γ̂) 0

]−1

,

whereHx and Jx respectively denote the Hessian and the Jacobian of a function with respect

to x. The bordered Hessian standard errors are found using the square root of the diagonal

of Σ̂θ2 .

The remaining two matrices are related to the first-stage estimates γ̂. The matrix Ω̂

describes how the CMLE’s Lagrangian changes with respect to γ and θ2 and is given by

Ω̂ =

[
Jθ2L

∗(v̂|Y, γ̂)T JγL
∗(v̂|Y, γ̂) + Jθ2V(θ̂2; γ̂)

T
JγV(θ̂2; γ̂)

0

]
.

Here, L∗ is the vector-valued log-likelihood of the entire data:

L∗(v|Y, γ) =
(
logP (atH ; st, vH) + logP (atH ; st, vH) + log f(st; at−1, st−1, γ)

)T
t=1

.

Note that for a given estimate of γ, the transition probabilities are fixed and so using

either L(v|Y ) or
∑T

t=1 L
∗(v|Y, γ̂) as the CMLE’s objective function will return the same

constrained maximum likelihood estimates of θ2.
8 The final piece is the first-stage covariance

matrix Σ̂γ , which we construct using the parametric bootstrap mentioned above.

Furthermore, we also want to know how sensitive the second-stage estimates are to

changes in the first-stage estimates. To consider this we conduct a sensitivity analysis

where for each iteration b = 1, 2, . . . , B we conduct the following exercise:

1. Draw new values for continuous state variable s̃tb using the parameters from the first-

stage model

2. Re-fit the first-stage model to produce new estimates γ̂b.

8For completeness in L∗ we impose f(s1; a0, s0, γ) = 1 or log(f(s1; a0, s0, γ)) = 0
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Figure F.1: Sensitivity of payoff estimates to first-step estimates.
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3. Re-fit the second-stage model using γ̂b and observed data Y = (st, at)Tt=1. Save β̂b, κ̂b.

4. Repeat steps 1-3, B times.

This analysis allows us to consider how much variation there is in the second-step estimates

under a range of plausible values of γ̂. If the analysis is highly sensitive to the first-

stage values, then we should see a large range of second-stage values. We are particularly

interested in seeing how frequently the signs on the second-stage estimates change. We run

the analysis for 500 iterations and save the results that report successful convergence. The

results are reported in Figure F.1.

There are few points of interest in Figure F.1. Most importantly the signs on the

estimates almost never change over the course of this experiment and are in the expected

direction in more than 98% of simulations. The few cases that do not match the main

results are clear outliers from the other cases. Overall, these histograms all peak around

the point estimates reported in Table 2, which is a good sign that the exact estimates of γ

used in the main model are not driving the main results.

G Model fit and comparisons

G.1 Comparison to alternative theoretical models

In this appendix, we continue our comparison of the main structural model to several

alternative models. As mentioned in the main text, we consider a type of “null model”

that we call the no-competition model. In the no-competition model, neither side can use

violence to move public opinion (i.e., outbidding cannot happen). Technically, this results
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in a model where γF,1 = γF,2 = γH,1 = γH,2 = 0. Under this assumption, we cannot

identify β and so the only parameters used to fit the no-competition model are κF and κH .

Intuitively, the no-competition model represents a world where costs/desire for violence

(broadly defined) determine actions, but outbidding and cannot be part of that because

violence does not affect popularity. In the second comparison model, we consider the tit-

for-tat model mentioned in the main text. The results from this comparison models are

presented alongside the main model in Table G.1.

Table G.1: Comparing outbidding to other theories.

Outbidding
(main model)

No-competition Tit-for-tat

βH −0.01
(0.004)

βF 0.0005
(0.0003)

τH 0.75
(0.44)

τF 1.33
(0.49)

κH −0.95 −0.25 −0.35
(0.23) (0.12) (0.13)

κF −2.46 −2.54 −3.32
(0.28) (0.22) (0.42)

LL −278.20 −284.18 −278.59
T 300 300 300

Standard errors from the bordered Hessian in parentheses

There are a few points of interest here. First, we see that there is some evidence in

favor of tit-for-tat violence. Both τ estimates are positive, suggesting that groups receive

some benefit for retaliatory violence. Interestingly, Fatah appears to place higher value

on responding to violence from Hamas than vice-versa, while still facing larger costs to

committing violence. A fuller exploration of these results is left to future work; of interest

to us is the comparison of these two models, discussed in the main text.

In comparing the fitted model to the comparison models, we consider two exercises.

First, in the main text, we directly compare the main model to the no-contest and tit-for-

tat models using nested and non-nested tests, respectively. In both cases, we find support

for outbidding model over the comparison model.

Second, we use each model’s conditional choice probabilities to assess how many attacks

by each actor we would expect to correctly predict (ePCP). For actor i, this value is given
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by

ePCPi =
1

T

T∑
t=1

Pr(ati; s
t),

where (ati, s
t) are the observed action-state pairs from the data Y and v̂i are the equilibrium

(net-of-shock) expected utilities estimated from the CMLE. We push on this comparison a

little more, by also considering an overall measure that aggregates across actors

ePCP =
1

T

T∑
t=1

∏
i=H,F

P (ati; s
t, v̂i).

Table G.2: In-sample model fit.

Main model No competition Tit-for-tat

ePCP–Hamas 0.54 0.51 0.51
ePCP–Fatah 0.83 0.86 0.87
ePCP–Overall 0.46 0.44 0.45

Table G.2 reports the results from both exercises. The three rows show us the expected

percentage of actions correctly predicted by each model. The first two rows break this

comparison down by actor. We see that the outbidding model is expected to correctly

predict 54% of Hamas’ actions and 83% of Fatah’s. For the two comparison models, these

values are 51% and 86-7%, respectively. Note that all three models do much better at

predicting Fatah, because Fatah attacks are much rarer. This rarity means that lots of “no

attack” predictions will be correct. Hamas attacks more often making it slightly trickier for

the model to predict. Interestingly, we see that our model does a better job at explaining

Hamas actions, while for Fatah the tit-for-tat model is slightly preferred.

When we consider the overall expected percent correctly predicted, we find that the

main model is preferred. The explanatory gains in predicting Hamas actions are more than

off-set by the decrease in understanding Fatah actions. This exercise opens the door for

other, competing theories and models of these data that may improve on our outbidding-

based approach.

G.2 Comparison to reduced-form results

In this Appendix, we illustrate why reduced-form approaches cannot uncover evidence

either for or against outbidding using the same data we analyze. Instead of examining

model fit, we focus on why countervailing encouragement and discouragement effects mask

outbidding’s presence.

As previously noted, most reduced-form outbidding studies do not try to directly mea-

sure popular support and, as such, do not consider the effectiveness of attacks within an

outbidding framework. A rare exception is Jaeger et al. (2015) who examine data from
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the Second Intifada and find that attacks from Hamas and Fatah make the groups more

popular among Palestinians. Indeed we find a similar result in Table 1 in the main text.

Nonetheless, the authors do not attempt to quantify the effects of competition on violence.

The most direct translation from standard outbidding work would be to use a Poisson

regression to regress the total number of terrorist attacks in a given month against some

transformation of the state variable such that it reflects the tightness of the competitive

environment, perhaps, negative distance from the mean popularity level. Applying such

an approach to our data does return a positive coefficient, such that months when relative

popularity is closer to the in-sample average have more violence, on average, than months

where relative popularity is extreme. The estimate is statistically insignificant (p > 0.80)

with small substantive implications, however. The results do not meaningfully change if

one uses median level of relative popularity to compute the distance.

Thus, when examining the reduced-form correlation between relative popularity and

attacks, it is not clear whether outbidding appears in the data. As such, we consider a

more sophisticated approach based on vector auto-regression (VAR) of the state and action

variables to give reduced form methods a better chance at estimating the relationships

among these factors.

The VAR approach considers the states and actions as three outcomes in a system of

equations. Given the unit root in s̃t, we work in differences ∆s̃t, the VAR model is now

specified as ∆s̃t

atH
atF

 = Π0 +
L∑

ℓ=1

Πℓ

∆s̃t−ℓ

at−ℓ
H

at−ℓ
F

+

 νts

νtaH
νtaF

 .

Here, Π0 is a length-3 vector of constant terms. The remaining Π matrices are 3×3 coefficient

matrices, again with each row representing the relationships between each outcome and

lags of all other outcomes. Finally, the ν terms represent exogenous error terms for each

equation. We use BIC comparisons to select L = 2 lags of the variables.

The VAR results are presented in Table G.3, where each column represents one of the

three equations, above. The estimates in the first column are similar to the ECM model

in Table 1, which is unsurprising given that the setups are nearly identical. Again, we see

that terrorism is effective at moving relative popularity in each group’s preferred direction.

Turning to the other two columns, however, we see that there is little-to-no observed effect of

popularity on either actor’s decision to use terrorism. Specifically, we see weak relationships

where both groups are slightly more likely to attack if there is a positive change (pro-Fatah)

in public opinion.

To make these marginal effects more clear, consider the impulse response function for

these three variables, as presenting in Figure G.1. In this figure, the columns represent the
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Table G.3: VAR regression results

∆ States Hamas Attack Fatah Attack

∆s̃t−1 0.91 0.04 −0.11
(0.02) (0.15) (0.08)

Hamas attackst−1 −0.27 0.29 0.07
(0.01) (0.06) (0.03)

Fatah attackst−1 1.02 −0.01 0.002
(0.02) (0.11) (0.06)

∆s̃t−2 0.01 0.03 0.06
(0.02) (0.09) (0.05)

Hamas attackst−2 0.28 0.23 −0.03
(0.01) (0.07) (0.04)

Fatah attackst−2 −0.94 0.01 0.23
(0.03) (0.18) (0.10)

Const. −0.01 0.21 0.03
(0.01) (0.04) (0.02)

Note: Least squares estimates with standard errors in parenthesis.

effects of a 1 unit shock to that variable on the three outcomes (the rows). So the first,

column shows the effects when ∆s̃t increases by 1. The persistence in the state space is

noted here, it takes more than six months for ∆s̃t to return to its baseline, but there are

no discernible effects on either actor. Overall, there is little relationship between changes in

popularity and changes in attack probabilities when studying the marginal effects estimated

by VARs.

However, the deceptively tricky part of reduced-form analysis, is that we have no idea

if these weak relationships are evidence of outbidding or not! We still see evidence of each

side’s ability to outbid (i.e., attacks from a group increase its popularity), but do these

various null relationships provide evidence that groups are valuing popularity? Moreover,

we see little evidence that changes in popularity affect violence here. As discussed above,

both deterrence and emboldening effects are consistent with outbidding. But, we do not

know, absent the structural model, if this null result suggest that: a) outbidding is a poor

explanation or b) if heterogeneous effects are canceling each other out. Scholars finding

results like this may be tempted to report that they have found a null effect of popularity

on terrorism, but our application of theory to these data reveal a much richer story of

heterogeneous effects.

H Robustness to different time spans

In this appendix, we consider alternative time frames or subsamples of the data. The

different time spans represent plausible break points in the Fatah-Hamas relationship, such

that the underlying competition between the groups may have changed. As such we want
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Figure G.1: Impulse response function from the VAR model, six months out. Shaded
area is a bootstrapped 95% confidence interval

to be sure that our estimates of the groups’ preferences are robust to the exclusion of some

of these later observations. Specifically, we consider the following time periods:

1. Until the formation of the Fatah-Hamas unity government in April 2014 (Jan. 1994–

Mar. 2014)

2. Until the signing of the first Fatah-Hamas unity agreement in 2011 (Jan. 1994–Apr.

2011)

3. Until the last recorded Fatah attack in the GTD (Jan. 1994–Mar. 2009)

4. Until Hamas wins the 2006 legislative elections (Jan. 1994–Dec. 2005)

5. Until the start of the Second Intifada in 2001 (Jan. 1994–Aug. 2000)

6. From the same year that Bloom (2004) starts (Jan. 1997–Dec. 2018)

7. From 2001 (Jan. 2001–Dec. 2018)

Notice the first 5 subsamples end our overall sample at earlier dates, and the last two

subsamples start the overall sample at a later date. The results of these short-T robustness

checks are presented in Table H.1 along with a reproduction of the main model (1994-2018)

for comparison. The CMLE failed to converge in the smallest sample so we employ an

alternative estimation method called the nested-pseudo-likelihood estimator (Aguirregabiria
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and Mira 2007; Crisman-Cox and Gibilisco 2021), which did converge. In general, the

estimates are very stable across samples.

I Choice of discount factor

In this appendix, we consider how our choice of discount factor affects our results.

Specifically, we fix δ to 0 and then a few different values in the interval [0.9, 1) and then

reestimate the second-stage model at each value. Table I.1 shows the estimates and log-

likelihoods of the second-stage model under different fixed values of the discount factor δ.

The model with the best fit among these options is δ = 0.999. As such we use this value in

both the main model specification and the numerical examples.

Figure I.1: Discount factors and equilibrium attack probabilities

0.99 0.999 0.9999

0.9 0.925 0.95 0.975

−10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10

−10 −5 0 5 10

0.2

0.4

0.6

0.2

0.4

0.6

Relative Popularity (States)

P
r. 

A
tta

ck

Actor Fatah Hamas

Note: Graphs of the estimated equilibrium attack probabilities at 7 different discount factors. Setting δ = 0.999
(second row, second column) is identical to Figure 4. The CMLE model failed to converge when δ = 0.9999 as in
Table I.1.

Figure I.1 shows how the choice of discount factor affects the estimated equilibrium

attack probabilities. Notice that when δ = 0.999, the probabilities are identical to those

in Figure 4 from the baseline analysis. The graphs in Figure I.1 demonstrate that for

δ ∈ {0.99, 0.999} the attack probabilities are almost identical. Comparing across these two
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Table I.1: Estimates at different discount factors

δ 0 0.9 0.925 0.95 0.975 0.99 0.999 0.9999

βH −0.51 −0.33 −0.18 −0.09 −0.03 −0.01 −0.01
(0.21) (0.15) (0.10) (0.03) (0.01) (0.00) (0.01)

βF −0.03 −0.02 −0.01 0.02 0.01 0.00 0.00
(0.08) (0.05) (0.03) (0.01) (0.00) (0.00) (0.00)

κH −0.25 −1.17 −1.07 −0.91 −1.15 −1.05 −0.95 −2.09
(0.12) (0.40) (0.39) (0.38) (0.27) (0.25) (0.23) (0.33)

κF −2.54 −2.28 −2.28 −2.26 −2.76 −2.55 −2.45 −3.26
(0.22) (0.70) (0.67) (0.63) (0.42) (0.34) (0.28) (0.36)

LL −284.18 −281.03 −281.58 −282.47 −283.77 −280.83 −278.2 −307.4∗
Note: ∗Model failed to converge. BH standard error in parenthesis

estimated models, the average difference in attack probabilities is 1.2 percentage points

for both actors. The maximum difference is 2.4 percentage points for Hamas and 2.4

for Fatah. Technically, at a tolerance of 0.05 (i.e., 5 percentage points), the equilibrium

choice probabilities are identical for δ ∈ {0.99, 0.999}. Substantively, the predictions in the

estimated model are roughly invariant to choosing a discount factor between [0.975, 0.999].

These similarities likely arise because discount factors are difficult to identify in dynamic

discrete choice models generally (Abbring and Daljord 2020; Magnac and Thesmar 2002).

When δ is difficult to identify, we would expect several values of δ to return essentially

identical equilibrium attack probabilities, which is what we see in Figure I.1.

J Robustness to discretization

In this Appendix, we show how our results are robust to the choices surrounding the

discretization of the continuous state variable s̃ into the discrete state variable s. There

are two factors that can be adjusted here: the space between states (2d) and the cutpoint

that signals the highest/lowest state. In the main model we use the as the 2.5th (97.5th)

percentile of s̃t as the cutpoint to denote the most Hamas (Fatah) friendly state. Likewise,

we use 2d = 0.05 as the distance between states, giving us K = 440.

To assess the robustness of these two choices we consider all combinations of 2d ∈
{0.025, 0.05, 0.075} crossed with endpoint percentiles in {0.0125, 0.025, 0.0375}. The middle

case 2d = 0.05 and the endpoint percentile of 0.025, match the main results, the other models

show how sensitive the results are to these choices. These new models are presented in Table

J.1. Overall, we see that the main results are robust to changes in these discretization

parameters.

The above analysis provides us with assurance that the main results are robust to

changes in discretization choices around the original choice of 2d = 0.05. However, it is

worth noting the models in Table J.1 have a large number of states relative to the number

of observations. There may be a concern with estimating vi(ai, s) for states are never visited

or only visited once. As such, one may wonder whether our results are robust to a coarser

discretization, although as mentioned in the main text, one of the justifications for using
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Table J.2: Estimates at coarse discretizations of s̃.

2d 0.05 0.75 1 1.5
End percentile 0.025 0.025 0.025 0.025
K 440 30 22 15

βH −0.01 −0.01 −0.02 −0.08
(0.004) (0.005) (0.01) (0.02)

βF 0.0005 0.001 0.001 0.002
(0.0003) (0.0003) (0.0003) (0.002)

κH −0.95 −0.94 −0.95 −0.89
(0.23) (0.22) (0.23) (0.20)

κF −2.46 −2.68 −3.09 −3.07
(0.28) (0.31) (0.36) (0.62)

LL −278.20 −277.12 −275.38 −274.42
Note: BH standard errors in parentheses.

OLS to estimate γ is that we have a large number of grid points. In Table J.2, we see that

the point estimates are largely unchanged as we increase 2d even when K is quite small.

When K ≤ 30, all states are visited at least twice. When K = 15, the value of popularity

for each group increases in magnitude, so there is some change here.

Finally, we also investigate our estimated attack probabilities with a coarse state space.

Figure J.1 graphs the attack probability as a function of the state, one for each model in

Table J.2; Figure J.2 graphs the attack probabilities as a function of time given the observed

states st in the data. Again, the takeaway is the same. Our results are robust for even a

small K, although attack probabilities change when K = 15, where the results no long find

a non-monotonic relationship between the probability of attacks and the state space.

This results are explained by two reasons. First, when K is small, we no longer see

less attack when Hamas is very popular, e.g., the year around when they win legislative

elections. When K is small, observations from this lull are grouped with observations where

Hamas is popular but still attacks, e.g., during the middle of the Second Intifada. Second,

when K is small enough, the expected state is the current state regardless of the whether

a group attacks, even Fatah, the group that was estimated to be the most effective. As a

result benefits of popularity βi start to blow up to better explain the data.

K Interpreting estimates of βi

It is difficult to directly interpret that magnitude of βi for several reasons. First, the

magnitude depends on the scale of relative popularity, so dividing or multiplying the ob-

served relative popularity levels by a constant will have a mechanical effect on the magnitude

of βi. Second, this is a dynamic model, so the effects of changing per-period incentives on

the group’s propensity to attack is mediated by the group’s dynamic optimization problem.
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Figure J.1: Estimated attack probabilities over states with a coarse state space.
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Baseline K = 30

−10 −5 0 5 10 −10 −5 0 5 10

0.2

0.4

0.6

0.2

0.4

0.6

Relative Popularity (states)

P
r. 

A
tta

ck

Actor Fatah Hamas

Note: Estimated probability that each group attacks as a function of the popularity level s. Hamas (Fatah) prefers
smaller (larger) states. The horizontal axis includes a rug plot of observed attacks. Baseline panel replicates Figure
4 with K = 440.

As such, the magnitude of βi depends on the discount factor δ. When δ becomes larger,

small changes in per-period incentives have larger effects on each group’s behavior.

To better illustrate the importance of each group’s value of popularity, we compare

group i’s estimated equilibrium attack probabilities, i.e., those in Figure 3, to i’s probability

of attacking when βi = 0, holding all other parameters fixed. Figure K.1 presents the

comparison. As in Figure 3, the x-axis is time, and the y-axis is the probability of an attack.

The darker lines show equilibrium attack probabilities for each group, i.e., P (ai = 1; st, v̂i)

where st is the observed relative popularity level in period t and v̂i is estimated from the

CMLE. The transparent lines denote the attack probabilities for each group when βi = 0,

holding fixed all other parameters, in particular κi, at their previously estimated values.

Notice that when βi = 0, i’s attack probability is a constant because there are no longer

strategic nor dynamic incentives to attack when i does not care about its relative popularity.

As such, the probability that group i attacks is Pr(εti(0)− εti(1) < κ̂i), where κ̂i is given in

Table 2. This probability is roughly 0.28 for Hamas and 0.08 for Fatah.

Substantively, this leads to large effects. To see this, Hamas’s average propensity to

attack in the estimated equilibrium, is 0.41, averaging over all observed states st in the data.

Thus, if Hamas did not value its popularity (βH = 0), then its propensity to attack would
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Figure J.2: Estimated attack probabilities over time with a coarse state space.
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Note: Horizontal axis denotes sample months/periods. Left vertical axis is the estimated probability that i attacks
in month t, i.e., P (ai = 1; st, v̂i) where st is the observed relative popularity level in period t and v̂i is estimated
from the CMLE. The horizontal axis includes a rug plot of observed attacks. Baseline panel replicates Figure 3 with
K = 440.

decrease by 14 percentage points, a roughly 33% decrease from the equilibrium baseline.

Likewise, Fatah’s average propensity to attack in the estimated equilibrium is 0.11. Thus,

if Fatah did not value its popularity (βF = 0), then its propensity to attack would decrease

by 3 percentage points, a roughly 30% decrease from the equilibrium baseline.

L Comparative statics with multiple equilibria

In this Appendix, we detail how to compute comparative statics on the exogenous pa-

rameters using predictor-corrector homotopy method proposed in Aguirregabiria (2012).

We use this method when examining how changes in exogenous parameters (β, κ, γ) affect

equilibrium behavior.9 Because there are multiple equilibria, we cannot just vary the ex-

ogenous parameters, compute a new equilibrium, and compare choice probabilities under

the old and new parameters values. Doing so would not guarantee that the new equilibrium

bears any resemblance to the estimated one. For example, it is possible to uncover differ-

ences in choice probabilities when selecting among different equilibria even when exogenous

features of the game do not change—see the numerical example in Section B as an example.

9Specifically, we use this procedure to create Figure 6 and Table 5 in the main text, Figures A.3, and
A.4 in Appendix A, and Figure B.4 in Appendix B.
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Figure K.1: Illustrating the importance of the estimated values of popularity
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Note: In the darker lines, we graph the estimated probability that i attacks in month t, i.e., P (ai = 1; st, v̂i) where
st is the observed relative popularity level in period t and v̂i is estimated from the CMLE (as in Figure 3). In the
transparent lines, we graph i’s probability of attacking when βi = 0 while holding all other parameters as fixed.

To describe the method, collect the exogenous parameters of interest in vector θ̃ =

(β, κ, γ), and suppose v is an equilibrium given exogenous parameters θ̃, i.e., V(v|θ̃)−v = 0.

Comparative statics refer to how the equilibrium v changes as we vary the parameters

from θ̃ to θ̃′ ̸= θ̃. When the Jacobian of V (with respect to v) is not vanishing (i.e., the

Jacobian matrix has full rank), then small changes in the exogenous parameters produce

small changes in the endogenous equilibrium by the implicit function theorem. The rank

condition on the Jacobian matrix can be verified given parameters θ̃ and an equilibrium

v. Furthermore, this insight can be used to conduct comparative statics in the presence

of multiple equilibria. More specifically, for small changes in the parameter vector θ̃, we

first approximate changes in v using the implicit function theorem and linear interpolation.

Next, we use these approximations as starting values in a Newton-Raphson algorithm that

computes a new equilibrium after small changes in the parameters. Finally, we repeat this

procedure until reaching the final parameter vector of interest θ̃′. A minor difference between

this routine and the specifics discussed in Aguirregabiria (2012) is that ours requires the

computation of equilibria at each step along the line from θ̃ to θ̃′. While this does increase

the computational burden of the procedure, it is feasible and will return an equilibrium

upon convergence. This procedure is also used by Crisman-Cox and Gibilisco (2018).
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Algorithm 1: Comparative Statics (CS) using a homotopy

Input: An initial coefficient vector θ̃ = (β, κ, γ) and equilibrium v such that
V(v|θ̃)− v = 0; new values θ̃′; and a tuning parameter n ∈ N. For the
Newton solver, a convergence tolerance ϵ > 0 and maximum number
iterations m ∈ N.

Output: An equilibrium v′ under new parameters θ̃′, i.e., V(v′|θ̃′)− v′ = 0
1 θ̃old ← θ̃
2 vold ← v
3 for i← 1 to n do
4 λ← i

n

5 θ̃new ← (1− λ)θ̃ + λθ̃′

6 slope← − (JvV(vold | θold)− 1)−1 Jθ̃V(vold | θold)
7 start← vold + [θnew − θold] slope

T

8 (vnew, success)← Newton(start,V(x | θnew)− x, ε,m)
9 if success then

10 θold ← θnew
11 vold ← vnew

12 else
13 vnew ← “Warning: Convergence Problems.”
14 break

15 v′ ← vnew
16 return v′

Algorithm 1 presents the specifics of the procedure for reference and is an implemen-

tation of the predictor-corrector method applied to our model. Here, n ∈ N is a tuning

parameter describing how many steps the algorithm takes as the parameters move away

from θ̃ to θ̃′. When n is very large relative to ||θ̃ − θ̃′||2, the algorithm is more careful to

avoid switching equilibria when looking for counterfactual changes. In line 6, we invoke the

implicit function theorem, where 1 is the identity matrix of size 4K and the variable slope

stores Dθ̃ v. In line 7, we use linear interpolation to predict how the equilibrium changes as

the exogenous parameters change from θ̃old to θ̃new. In line 8, we use the Newton-Raphson

method. As input, we give it the starting values in start, the function (that takes input

x ∈ R4K) V(x | θnew) − x, a convergence tolerance ϵ > 0 and a maximum number of iter-

ations m. As an output, it returns a pair including a potential solution given exogenous

parameters θ̃new and an indicator of a successful convergence. The Newton-Raphson algo-

rithm has converged when ||V(vnew | θnew) − vnew||∞ < ϵ. In our experiments, we save the

output of the Newton call (vnew) in each iteration to produce a continuous representation of

the equilibrium, which we use to graphically verify that the output has indeed continuously

traced the equilibrium as parameters vary from θ̃ to θ̃′.
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