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Abstract
Signaling games are central to political science but often have multiple equilibria, leading to no definitive
prediction. We demonstrate that these indeterminacies create substantial problems when fitting theory to
data: they lead to ill-defined and discontinuous likelihoods even if the game generating the data has a
unique equilibrium. In our experiments, currently used techniques frequently fail to uncover the para-
meters of the canonical crisis-signaling game, regardless of sample size and number of equilibria in the
data generating process. We propose three estimators that remedy these problems, outperforming current
best practices. We fit the signaling model to data on economic sanctions. Our solutions find a novel
U-shaped relationship between audience costs and the propensity for leaders to threaten sanctions,
which current best practices fail to uncover.

Keywords: Maximum likelihood estimation (MLE); Structural estimation; Crisis-signaling; Economic sanctions

Political scientists use signaling games across practically all subfields. Scholars of international
relations in particular use the models to address questions about economic sanctions, crisis bar-
gaining, escalation in interstate disputes, and terrorism. As a result of this ubiquity, scholars
structurally estimate increasingly more complicated signaling models (Lewis and Schultz, 2003;
Wand, 2006; Whang, 2010; Whang et al., 2013; Bas et al., 2014; Kurizaki and Whang, 2015).
Advocated by the movement for empirical implications of theoretical models, the structural
approach allows researchers to account for strategic interdependence in the data generating pro-
cess, estimate theoretical parameters of interest, and conduct counterfactual policy analysis in the
absence of experimental conditions.

Despite these benefits, political scientists still face substantial theoretical and computational
hurdles when estimating signaling games. In these games, each player knows her private infor-
mation at the beginning of the interaction and behavior is characterized by perfect Bayesian equi-
libria. The most pressing problem is how to build a coherent empirical signaling model that
smooths out issues arising from the multiplicity of equilibria common to these games. In this
paper, we address this problem by adapting three techniques from the dynamic games and indus-
trial organization literatures (e.g., Ellickson and Misra, 2011; De Paula, 2013) to estimate the
canonical crisis-signaling model in Lewis and Schultz (2003). We demonstrate that they outper-
form current best practices—in terms of statistical performance and computational feasibility.
Through a series of experiments and applications, we argue that these solutions are well suited
for the simpler, but far more influential, models in political science.

Current best practices for estimating the crisis-signaling model use variants of the maximum
likelihood (ML) routine proposed by Signorino (1999) to estimate the parameters of extensive-
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form games with quantal-response equilibria (QRE). In these best practices, a characterization of
the game’s perfect Bayesian equilibria is used to derive a likelihood function for the observed data.
Then a numerical optimizer maximizes this likelihood function by computing an equilibrium for
every observation at every guess of the parameters. While straightforward, the procedure sidesteps
a substantial problem in practice: an equilibrium is computed as if it is unique. Unlike the QRE
models in McKelvey and Palfrey (1998) and Signorino (1999), multiple perfect Bayesian equilib-
ria may exist in the crisis-signaling game under reasonable payoff parameters. This multiplicity
creates an indeterminacy in the likelihood function, leading to inconsistent estimates
(Jo, 2011). Hereafter, we call the ML routines that ignore multiplicity “traditional” ML (tML),
reflecting current practices (e.g., Whang et al., 2013; Bas et al., 2014; Kurizaki and Whang, 2015).

Past justifications for estimating crisis-signaling games with the tML routine rely on either
using refinements to reduce the number of equilibria (e.g., Jo, 2011) or verifying equilibrium
uniqueness at the point estimates while ignoring multiplicity during estimation (e.g., Bas et al.,
2014). We show that neither adequately solves the problem. Regarding the former, we prove for-
mally that all equilibria of the crisis-signaling game almost always satisfy the regularity refine-
ment, one of the most stringent in the literature (van Damme, 1996). That is, equilibria are
equally robust to standard refinements. Nonetheless, researchers could adopt an ad hoc selection
rule (e.g., select the equilibrium maximizing the likelihood), but we show that this approach gen-
erates discontinuities in the tML’s likelihood function. Furthermore, the number of discontinu-
ities can grow as the sample size increases. Thus, selection rules not only necessitate extraneous
computations to identify the equilibrium of interest at every optimization step, but they also
require maximization of discontinuous objective functions. These computational complexities
dramatically reduce the tML’s already poor feasibility. Indeed, several scholars have abandoned
the structural enterprise for reduced-form alternatives citing feasibility concerns (Trager and
Vavreck, 2011; Gleditsch et al., 2018).1

Regarding the latter, likelihood functions may be evaluated at parameter values under which
multiple equilibria exist even if there is a unique equilibrium in the game generating the data. For
example, optimization routines often take incorrect guesses at the parameters as they search for
the ML estimates. As such, the routines may potentially evaluate the likelihood function at para-
meters under which multiple equilibria exist even if there is a unique equilibrium at the true para-
meters in the data generating process. This indeterminacy at incorrect parameter values allows the
likelihood function to be evaluated incorrectly and leads to the same discontinuities discussed
above, making it difficult to find the correct values. As such, we find that tML routines demon-
strate consistently poor performance across a variety of experimental settings, regardless of sam-
ple size, use of global optimizers, or the number of equilibria in the game generating the data.

In contrast, we treat equilibrium selection as an empirical problem by allowing it to depend on
observables. Indeed, having multiple equilibria allows the empirical model greater flexibility in
matching real-world interactions. Furthermore, our solutions accommodate empirical selection
in a manner that smooths out the issues created by multiple equilibria. Specifically, they rely
on the observation that fixing the equilibrium beliefs to their true values when computing best
responses removes the indeterminacies in the likelihood without generating discontinuities. Of
course, these equilibrium quantities are unobserved, so our proposed solutions rely on estimating
them. Specifically, we begin with the assumption that equilibrium strategies, and hence beliefs,
can be inferred from observables, either because we observe several interactions from the same
equilibrium or because dyads with similar covariates play similar equilibria. For an example in
the international relations context, the latter suggests that countries with high levels of trade likely
play the game similarly to each other but differently from non-trading countries. Estimating the
equilibrium strategies in a first stage and using them in place of their true values in a second stage

1Gleditsch et al. (2018) refer to the Lewis and Schultz (2003) model as “demanding” in justifying their alternative
approach.
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provides a feasible pseudo-likelihood (PL) solution to the problem of estimating the game’s
parameters.

While relatively innocuous in principle, this approach requires accurate estimates of equilib-
rium quantities. We therefore introduce two additional methods to alleviate the reliance on first-
stage estimates. The first is a nested-PL (NPL) approach that uses the PL estimates to update
actors’ beliefs which were estimated in the first stage, allowing the analyst to then update the pay-
off parameters. The process is iterated until convergence, making the final estimates less depend-
ent on the initial guesses of the equilibrium strategies. The second approach is to estimate
equilibrium strategies as dyad-specific (game-specific) parameters in a single-stage
constrained-ML estimator (CMLE). While this approach does not require initial estimates of
the equilibrium beliefs, it does requires panel-like data wherein we assume that each dyad
plays from the same equilibrium every time it interacts.

All three of our proposed estimators outperform the tML by reducing variance and bias by
orders of magnitude. Specifically, the CML is almost always the best performer, but it is also
the most difficult to implement. The PL and NPL are very easy to implement and both work
very well in a variety of settings. We also provide an R package to fit crisis-signaling models
using the PL and the NPL.

By studying the widely used crisis-signaling model, this paper advances our understanding
about the challenges that arise when connecting theory to data. More broadly, we demonstrate
that theoretical issues such as equilibrium multiplicity, although often cast as a nuisance to be
refined away, have important consequences when fitting models to data. Sidestepping these issues
can result in mistaken substantive conclusions. While we focus on a specific game that holds a
prominent place in international relations, identical problems arise in other games with multiple
equilibria, e.g., games with simultaneous moves or infinitely repeated interactions. Our analysis
should therefore encourage political scientists to structurally estimate a wider array of models.

Our empirical application uses the crisis signaling game to study the strategic incentives of
sanction threats and impositions (as in Drezner, 2003; Whang et al., 2013). Past work has
shown that domestic audiences affect sanction duration and effectiveness (Martin, 1993;
Dorussen and Mo, 2001; Krustev and Morgan, 2011) and that audience costs arise when leaders
back down from sanction threats (Hart, 2000; Thomson, 2016). Yet scholars have not connected
audience costs to the initiator’s decision to threaten sanctions.2 We fill this gap in the literature by
fitting the crisis-signaling model to the Threat and Imposition of Sanctions (TIES) dataset. Our
results indicate a novel U-shaped relationship where only leaders with large or small audience
costs freely threaten sanctions, as the former can credibly commit to such threats and the latter
need not worry about the consequences of backing down. Such a result would be lost in trad-
itional regressions that assume a monotonic relationship between audience cost measures and
outcomes. Furthermore, the vast majority of observations are located on one side of the
U-shaped curve: larger audience costs encourage leaders to threaten sanctions.

An important predecessor to this paper is Jo (2011) who demonstrates that multiple equilibria
exist in the crisis-signaling game and that tML procedures ignoring multiplicity do not perform
adequately. Indeed, this is the major problem we address in this paper, but we also build upon Jo’s
endeavor in several ways. First, we explicate the computational issues that arise when researchers
attempt to address multiplicity by either using refinements or verifying uniqueness post-
estimation, including how multiple equilibria create discontinuous likelihood functions.
Second, we provide three simple solutions to estimating the crisis-signaling games and bench-
mark their performances in a variety of experimental settings. Third, we apply the estimators
to data on economic sanctions.

2Exceptions to this include Peterson’s (2013) work on reputation costs and US sanction threats and a brief aside in Whang
et al. (2013). Similarly, features of domestic audiences help to explain variation in the initiation of Word Trade Organization
disputes (Chaudoin, 2014).
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1. Model
States A and B compete over a good or a policy that is currently owned or controlled by B. At the
beginning of the game, the states observe private information. State A observes (εA, εa), where εA
and εa are additively separable payoff shocks to A’s utility for war and backing down, respectively.
Likewise, B observes εB which is an additively separable payoff shock to its war utility. All private
information (εA, εa, and εB) is independently drawn from a standard normal distribution.

Interaction proceeds according to Figure 1. First, A decides whether or not to challenge B for
control over the good, and if A does not challenge, then the game ends at node SQ with payoffs Si
for each state i. Second, after a challenge, B decides whether or not to resist A. If B does not resist,
i.e., B concedes to A’s demands, then the game ends at node CD, and payoffs are VA and CB for
states A and B, respectively. Finally, if B does resist, then A must decide whether to fight or not.
When A fights or stands firm, the states receive �Wi + 1i at node SF. Similarly, when A backs
down and does not fight, the games end at node BD with A receiving �a+ 1a and B receiving VB.

Perfect Bayesian equilibria (equilibria, hereafter) for the game can be represented as choice
probabilities. Let pC and pF denote the probability that A challenges and fights (conditional on
challenging) B, respectively, and let pR denote the probability that B resists. Let p = ( pC, pR, pF)
denote a profile of choice probabilities. Furthermore, let θ denote the vector of payoffs, i.e.,
u = (�a, CB, (Si, Vi, �Wi)i=A,B). The following result is due to Jo (2011) and characterizes the equi-
libria of the game in terms of a system of nonlinear equations.

RESULT 1(Jo, 2011): An equilibrium p̃ exists, and p̃ is an equilibrium if and only if it satisfies the
following system of equations:

p̃C = 1−F
SA − (1− p̃R)VA

p̃R
− �WA

( )
F

SA − (1− p̃R)VA

p̃R
− �a

( )
; g( p̃R; u), (1)

p̃F = F2

�WA − �a��
2

√ , �WA − SA − (1− p̃R)VA

p̃R
,

1��
2

√
( )

g( p̃R; u)
( )−1; h( p̃R; u), (2)

and

p̃R = F
h( p̃R; u) �WB + (1− h( p̃R; u))VB − CB

h( p̃R; u)

( )
; f ◦ h( p̃R; u), (3)

where Φ is the CDF of the standard normal distribution and Φ2( · , · , ρ) is the CDF of the stand-
ard bivariate normal distribution with correlation ρ.

In words, for a fixed θ, an equilibrium is completely pinned down by B’s probability of resist-
ing. In addition, the functions f, g, and h are essentially best-response functions. Specifically,
the functions g and h compute how A best responds to B’s probability of resisting pR, and
function f captures how B best responds to A. Furthermore, Jo (2011) illustrates that multiple
equilibria exist in a nontrivial set of parameters, i.e., there exists several solutions to the equation
f ○ h( pR; θ) = pR.

Before proceeding it is worth noting that there are different ways to specify how private infor-
mation is introduced in the model. We discuss how the problems we consider appear under some
of the most common information structures in Appendix A.
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2. Estimation: problems and solutions
We consider D independent dyads or games. Each dyad is parameterized by covariates xd and
common payoff parameters β which determine the model’s payoffs:

u(xd , b) =

SdA
SdB
VdA

CdB
�WdA
�WdB

�ad
VdB

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

xdSA · bSA
0
xdVA · bVA

xdCB · bCB

xd �WA
· b �WA

xd �WB
· b �WB

xd�a · b�a

xdVB · bVB

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

Each xd(·) vector above contains zero or more explanatory variables.3 Hereafter, we are interested
in the β parameters that are common across all games rather than θ(xd, β).

Let b∗ denote the parameters in the data generating process. Along with b∗, the covariate vec-
tor xd determines the equilibrium p∗(xd , b∗) = (p∗dC , p

∗
dF , p

∗
dR) that generates T≥ 1 outcomes

{ydt}
T
t=1, where ydt is a terminal node in {SQ, CD, SF, BD}. Thus, p∗d(xd , b

∗) is a solution to the
system of equations in Result 1, parametrized by payoffs u(xd , b∗). Additionally, the data are hier-
archical: a complete observation is a dyad d with a single vector of exogenous traits xd and a
sequence of outcomes {ydt}

T
t=1.

There are two important assumptions implicit in our empirical setup. First, we assume that two
states play from the same equilibrium conditional on xd rather than allowing the equilibrium to
vary over within-dyad observations. Substantively, this assumption reflects the international system
which has several forces incentivizing states to focus on a single equilibrium over time, including
persistent international norms/institutions (Keohane, 1984), a focal point specific to these two states
(Schelling, 1960), or other factors that emerge from repeated interaction. Technically, this is a stand-
ard assumption that is required in the recent empirical literature on estimating games with

Figure 1. The canonical crisis-signaling game.

3As in Lewis and Schultz (2003), identification depends on there being at least one variable (including the constant) for
each player that does not appear in all of that player’s utilities.
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incomplete information (Bajari et al., 2007; Ellickson and Misra, 2011). An alternative approach
might assume that states play from the same equilibrium across dyads rather than within dyads.
Such an assumption is more restrictive than ours, and it introduces an additional problem: because
dyads are parameterized by different covariates, the number of equilibria may differ between two
dyads even for a fixed θ, making it impossible to compare equilibria across observations.

Second, when dyads play T>1 rounds of play, we assume that a given equilibrium of the static
game is played. Such an assumption can be justified if states play the game for a finite number of
periods and private information is drawn independently over time. This assumption is a matter of
convenience because our goal is to address the technical challenges that arise when estimating
games with multiple equilibria even in the most straightforward environments. An added benefit
of this simplicity is that we can easily enumerate the set of equilibria, allowing us to illustrate how
equilibrium selection creates discontinuous likelihoods and the computational inefficiency of the
tML in these situations. While we acknowledge the importance of considering dynamic interac-
tions, this would require a different theoretical model, which is beyond the paper’s scope.4

Throughout we consider two numerical examples. Table 1 contains two sets of parameters that
we use to demonstrate cases with a unique and with multiple equilibria. In both settings we
include one regressor, xd∼U[0, 1], which enters B’s war payoff.5 There are a few additional things
to note about the parameters. First, we normalize the status-quo payoffs Si and B’s concession
payoff to zero, following standard identification assumptions (Lewis and Schultz, 2003;
Jo, 2011). Second, the differences in the two columns are minor: by making small adjustments
to only two parameters we can easily move into and out of situations where multiple equilibria
exist. Third, these parameters reflect reasonable payoffs that satisfy the restrictions in Schultz and
Lewis (2005). Both war and backing down from threats are worse than the status quo, and actors
only receive positive payoffs when their opponent backs down.

To illustrate the two settings, Figure 2 graphs the game’s equilibrium correspondence with
respect to xd. In the left-hand panel of Figure 2, there are multiple equilibria for values of xd
between 0 and 1. Here, the gray triangles in the plots illustrate how we determine which equilibria
generate the data in our Monte Carlo experiments. Specifically, when xd [ [0, 1

3 ), we use the
smallest equilibrium probability of resisting pR to generate the data for dyad d. When
xd [ ( 23 , 1], we use the largest. Finally, we use the moderate equilibrium in the remaining
case. Notice that the equilibrium correspondence is smooth in the sense that it is upper hemicon-
tinuous but selection creates discontinuities when modeling the probability of resistance pdR as a
function (not correspondence) of the covariate xd. The right-hand side of Figure 2 graphs the
equilibrium correspondence under parameters shown in the third column of Table 1, where
there is a unique equilibrium for all values of xd.

Table 1. Parameters for Monte Carlo experiments

Utility Multiple equilibria Unique equilibrium

SdA 0 0
SdB 0 0
VdA 1 1
CdB 0 0
�WdA − 1.9 − 1.8
VdB 1 1
�WdB − 2.9 + 0.1xd − 2.45 + 0.1xd
�ad − 1.2 − 1.2

4For an example of structurally estimating a dynamic game of crisis escalation see Crisman-Cox and Gibilisco (2018).
A key property of their model is that states have no signaling incentives as private information is transitory. With signaling
incentives, a fully dynamic model becomes substantially more intractable.

5A more realistic Monte Carlo experiment with multiple regressors can be found in Appendix C.4. Overall the results there
confirm what we report here in the simpler setup.
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2.1. Problems with current practices

Current best practices closely follow the ML techniques discussed in Signorino (1999). For every
β, an equilibrium to game d is computed by solving the system of equations in Result 1; call this
solution p(xd, β). Note that this solution is not necessarily unique, and following standard prac-
tices, we do not search for all solutions.

Using p(xd, β), we define the probability of reaching each of the terminal nodes as

Pr[ydt | p(xd,b)] =

(1− pdC) if ydt = SQ

pdC(1− pdR) if ydt = CD

pdCpdR(1− pdF) if ydt = BD

pdCpdRpdF if ydt = SF.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(5)

Under this setup, the log-likelihood takes the form

L(b | Y) =
∑D
d=1

∑T
t=1

log Pr [ydt | p(xd , b)], (6)

and the tML estimates attempt to maximize this log-likelihood.
As described in Jo (2011), the current approach evaluates the likelihood function as if a unique

equilibrium exists. That is, for each guess of the parameters, we compute an equilibrium, p(xd, β),
using a numeric equation solver. If there are multiple equilibria, then there is an indeterminacy in
how analysts evaluate p(xd, β). If the equation solver of choice selects the wrong equilibrium, i.e.,
not the one in the data generating process, then the likelihood is computed incorrectly, resulting
in mistaken inferences. To better see this problem, suppose there are D dyads, and fixing para-
meters β, suppose each dyad admits n>1 equilibria. In this case, there are nD possible values of the
log-likelihood for just this one guess at the parameter vector. Standard equation solvers return
just one of the nD combinations. As D increases, it is increasingly implausible that the correct
selection is made. An implication of this discussion is that two researchers can reach conflicting
conclusions even when analyzing the same data if they implement the tML estimator with differ-
ent equation solvers.

Before proceeding, we first consider potential fixes to the standard ML routine. We first ask:
Can multiplicity in the crisis-signaling game be solved with traditional refinements? If so, tML
techniques can be used so long as they are adjusted to always select the surviving equilibrium.
Refinements based on off-the-path-of-play beliefs, such as the Intuitive Criterion or Divinity,
are inconsequential here as all histories are reached with positive probability in every equilibrium.

Figure 2. The equilibrium correspondences for numerical examples.
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Because of this, an analyst may be tempted to use a refinement called regularity, which subsumes
several other refinements such as perfection, essentialness, and strong stability (van Damme,
1996).6 As we show in Appendix B, for almost all parameter values, all equilibria of the crisis-
signaling game satisfy regularity.7 Most importantly, the result demonstrates that multiplicity
cannot be ‘refined away’ using standard criteria, and the predictive indeterminacy that plagues
traditional maximum likelihood methods still persists.8

With traditional refinements offering little headway, analysts may turn to ad hoc selection cri-
teria such as selecting the equilibrium that maximizes a convex sum of A and B’s payoffs. But
determining the selection criterion forces an additional modeling choice onto the analyst. As
we show in our empirical application, such a choice is consequential and can heavily influence
the resulting estimates. Analysts could also consider empirical selection: for each dyad, select
the equilibrium that maximizes the dyad’s contribution to the likelihood. This would also remove
the indeterminacy in p(xd, β), but its implementation has several drawbacks. Researchers would
need to reliably compute all equilibria for every dyad at every guess of the parameters, a compu-
tationally demanding task. In addition, imposing this (and other) selection criterion introduces
discontinuities in the likelihood function as the number of equilibria and hence the solution to
the criterion varies across different parameter values.9 We return to this point in Appendix G.

2.2. Pseudo-likelihoods

Our first proposal involves a two-step estimator based on Hotz and Miller (1993) that essentially
removes the indeterminacy associated with multiple equilibria by using the observed data to select
appropriate equilibrium beliefs. In the first step, we produce consistent (in T or D) estimates of
the equilibrium choice probabilities p∗dR and p∗dF , for d = 1, …, D. We label these estimates
p̂R = (p̂1R, . . . , p̂DR) and p̂F = (p̂1F , . . . , p̂DF). While in theory we are agnostic about how an
analyst obtains the first-stage estimates, in practice we have found that random forests tend to
work very well across a variety of sample sizes and settings.

Next, consider how actors best respond to these first-stage estimates. By Result 1, the best
responses take the form:

p̂( p̂dR, p̂dF ; xd , b) =
g( p̂dR; xd , b)
h( p̂dR; xd , b)
f ( p̂dF ; xd , b)

⎡
⎣

⎤
⎦. (7)

In other words, if actors play the game as if they believed their opponents use strategies estimated
in the first stage, p̂dR and p̂dF , then p̂ are their best responses. These best responses approach their
true values as the first-stage estimates become more accurate. Using the first-stage estimates and
the associated best responses, we build the pseudo-log-likelihood function as

PL(b | p̂R, p̂F,Y,X) =
∑D
d=1

∑T
t=1

log Pr[ydt | p̂( p̂dR, p̂dF ; xd,b)]. (8)

6For a formal definition, see Appendix B.
7We say that a property holds for almost all parameters θ, if it does not hold at most in a closed, Lebesgue-measure-zero

subset of R8.
8We also consider best-response stability. We prove formally that if multiple equilibria exist, then at least one is

best-response unstable. Nonetheless, if multiple equilibria exist, then there are generally multiple best-response stable equi-
libria. For example, in the left-hand graph in Figure 2, the largest and smallest equilibria are best-response stable, while the
middle is unstable.

9Technically, this problem arises because the equilibrium correspondence, and hence likelihood correspondence, is upper,
but not lower, hemicontinuous.
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What is the intuition behind the estimator? If we know the equilibrium choice probabilities,
i.e., p̂dR = p∗dR and p̂dF = p∗dF for all dyads d, then the pseudo-likelihood is the likelihood in
Equation 6 with the correct equilibrium selection. In addition, it is a continuous function of
the parameters β. The equilibrium choice probabilities are unobserved variables, however.
Thus, we estimate them from the data, which is possible given our assumptions that two states
play from the same equilibrium conditional on xd. For example, because the states in dyad d
are playing from one equilibrium, when T is large, we can estimate p∗dR and p∗dF using frequency
estimators:

p̂∗dR =
∑T

t=1 I ydt [ {SF,BD}[ ]
∑T

t=1 I ydt [ {SF,BD,CD}[ ] and p̂∗dF =
∑T

t=1 I ydt = SF
[ ]

∑T
t=1 I ydt [ {SF,BD}[ ] ,

where I is the indicator function. As we observe more draws from the same equilibrium, i.e.,
T goes to infinity, the frequency estimates converge to their true values because the equilibrium
p∗d puts positive probability on all histories. Substituting the frequency estimates into Equation 8
demonstrates that the pseudo-likelihood converges to the true likelihood as T increases, and
under standard regularity conditions the PL estimates converge to the true ML estimates.
Thus, by estimating equilibrium beliefs from the data in a first-stage, we can select the appropriate
equilibrium in a continuous manner when estimating payoff parameters during the second stage.

In finite samples, frequency estimators may be impractical. One alternative is to pool informa-
tion across dyads and estimate the choice probabilities as functions of covariates xd, albeit with
highly flexible methods—hence our assumption that two observationally equivalent dyads play
from the same equilibrium. As mentioned, we have found that random forests work particularly
well in both our simulations and applications. Nonetheless, the PL estimator may perform poorly
if the first stage is misspecified or imprecise. The two methods we discuss below attempt to over-
come this issue.

2.2.1. Nested pseudo-likelihood
The NPL approach, proposed by Aguirregabiria and Mira (2007), builds on the PL by using best
responses to update the first-stage choice probabilities upon knowing the PL estimates. This pro-
cess is repeated until convergence. More precisely, the NPL algorithm begins with the PL
estimates,

(b̂NPL
0 , p̂R,0, p̂F,0) = (b̂PL, p̂R, p̂F),

and for the kth iteration, set

p̂dF,k = h(p̂dR,k−1; xd,bk−1)
p̂dR,k = f (p̂dF,k−1; xd,bk−1)
b̂NPL
k = argmaxbPL(b | p̂R,k, p̂F,k,Y,X).

The algorithm is repeated until the parameters and choice probabilities cease changing. The intu-
ition is to decrease the analyst’s reliance on correct first-stage estimates by updating the choice
probabilities with the new information captured in the estimated payoff parameters.

Without a particular stability condition on the data generating process, the NPL algorithm
may fail to converge (Pesendorfer and Schmidt-Dengler, 2010). Specifically, if the data generating
equilibrium is best-response stable, the above iteration will converge to the correct equilibrium as
long as the starting value is not too far away. In contrast, if the data generating equilibrium is
unstable, the above iteration may not converge to the true equilibrium. In Appendix C.3, we consider
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how sensitive the PL and NPL are to unstable equilibria. Overall, we find that both the PL and the
NPL still outperform the tML even if best-response unstable equilibria dominate in the data.

2.3. Constrained MLE

An alternative approach is to use a full-information CMLE, as proposed by Su and Judd (2012).
Applied to this problem, we maximize the likelihood in Equation 6 subject to the equilibrium
constraints in Result 1. Define

�p(pdR; xd, b) =
g(pdR; xd, b)
h(pdR; xd, b)

pdR

⎡
⎣

⎤
⎦, (9)

then the CMLE solves the following problem:

max
b, pR

∑D
d=1

∑T
t=1

log Pr [ydt | �p(pdR; xd , b)],

s.t. f ◦ h(pdR; xd , b) = pdR, d = 1, . . . , D.

(10)

Su and Judd (2012) demonstrate that the CMLE is equivalent to the trueMLE procedure in which
equilibria are selected to maximize each dyad’s contribution to the likelihood. Thus, the estimator
is essentially using the data to select equilibria, which is similar to the PL procedure where data
were used to estimate equilibrium beliefs. As mentioned above, modifying the tML to compute
every equilibrium at every guess of the parameters and to select the ones that maximize the like-
lihood dramatically reduces its feasibility because it requires repeated equilibrium computations
and introduces discontinuities.

The CMLE avoids these problems. By not requiring that pR satisfy the equilibrium condition at
every step in the constrained optimization, the CMLE avoids any equilibrium computation while
ensuring that the objective function is well-behaved and continuous. As such, the true maximum
likelihood estimates are discovered with a much lower computational burden than the tML with
empirical selection discussed above. Additionally, the CMLE improves on the pseudo-likelihood
procedures by eliminating the need to rely on first-stage estimates, resulting in both bias and effi-
ciency gains.

Despite these improvements, the CMLE has two drawbacks. First, the full-information con-
strained optimization approach introduces D auxiliary parameters in the form of pR; as such we
need T >1 in order to use this estimator. In contrast, the pseudo-likelihood approaches cover the
T=1 case. However, our Monte Carlo experiments demonstrate that the CMLE performs well
even with a small number of within-game observations. Second, solving this constrained optimiza-
tion problem requires specialized software; Appendix D contains complete implementation details.

3. Performance
We now evaluate the performance of the estimators in two settings: when there are multiple equi-
libria in the data generating process and when there is a unique equilibrium. We continue to use
the parameter values from Table 1, where xd is distributed standard uniform.10 Throughout, we
use the ordinary implementation of the tML as our baseline for comparison, which uses arbitrary

10The results we present here are unchanged when we use a more realistic Monte Carlo experiment with multiple covari-
ates in Appendix C.4.
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equilibrium selection and Nelder–Mead’s simplex method to find the estimates. These implemen-
tation choices match current practices as found in replication archives.11

To estimate equilibrium choice probabilities in the PL and NPL methods we use random for-
ests. There are two models in the first-stage, where the dependent variables are the nonparametric
frequency estimates of the probability that B resists (for p̂R) and A fights (for p̂F). We fit the for-
mer only with observations in which A challenges, and we fit the latter only with observations in
which B resists. For predictors, we include the one regressor xd.

We vary the number of dyads, D, between 25 and 200 and the number of within-game obser-
vation, T, between 5 and 200 to create simulated datasets of various sizes. For each combination of
D and T, we draw xd from the standard uniform distribution and then select the appropriate equi-
librium that generates the data for the corresponding dyad as shown in Figure 2. Finally, we use
the simulated data to estimate the game using all four estimators. Starting values for the PL and
tML are drawn from a standard uniform distribution, and the same values are used within each
Monte Carlo iteration. The CMLE and NPL use the PL estimates as starting values.12 We repeat
this process 1000 times for each pair of D and T and for each of the parameter settings in
Table 1.13

The main results of the experiment are summarized in Figures 3 and 4, which compare the
logged root-mean-square error (RMSE) of the estimators. The first thing we note is that the
tML (dashed line) performs consistently bad and shows no improvement as the amount of
data increases in either D or T. In many cases, its performance worsens as T increases.14

Contrast these results to those from the other estimators, which generally all improve with
more data. The PL (solid line) tends to be best performing estimator when both T and D are
small. Additional analysis in Appendix C shows that the estimator tends to have more bias
than the others and that its strong performance is driven by low variance. The NPL (dot-dashed
line) greatly improves the bias associated with the PL method without adding too much variance,
and as a result, we see that it performs very well in most settings, particularly as the amount of
data increases. Overall, the CMLE (dotted line) tends to be the best. However, this great perform-
ance often comes at the cost of decreased convergence rates and non-standard software choices.

Comparing Figures 3 and 4 reveals that the tML has uniformly poor performance regardless of
the number of equilibria that exist in the signaling game generating the data.15 What explains the
poor performance of the tML in the unique equilibrium experiment? Even in this setting the
tML’s likelihood function is often evaluated at incorrect parameter values. For example, we
pick starting values that are drawn uniformly over the interval [0, 1]. These are obviously incor-
rect, and the optimizer will need to search over the parameter space, evaluating the likelihood
function at incorrect parameter values. In some instances, dyads parameterized (incorrectly)
by these values will have multiple equilibria, and the objective function will need to select an
equilibrium in an ad hoc manner. This selection will lead to discontinuities and creates the pos-
sibility that an incorrect equilibrium is selected, i.e., an equilibrium that has little relation to the
one generating the data. These issues can lead even more robust optimizers astray.

11As the tML’s objective function contains discontinuities, gradient-free methods, such as Nelder–Mead, are a common
choice for avoiding expensive global optimization. We also considered global and quasi-Newton methods, and our conclu-
sions were unchanged. In contrast to the tML, our proposals have continuous log-likelihood functions, so we use the
gradient-based Newton–Raphson method for the PL and NPL and a Newton-based interior point method for the CMLE.

12The choice of random starting values for the tML and PL reflect the fact that they are competing methods in this experi-
ment. In contrast, the CMLE and NPL are natural extensions of the PL approach and use the PL to inform them. We explore
how the tML’s performance varies with starting values in Appendix E.

13Within each Monte Carlo iteration, results are considered converged and recorded only if a successful convergence code
is returned by the optimizer in question and all the point estimates are between −50 and 50.

14Appendix C contains additional Monte Carlo results relating to the bias, variance, convergence rates, and computational
time.

15Figures 11 and 12 in Appendix C.2 compare the estimators’ bias and variance in the unique equilibrium setting and
illustrate that the tML has the worst performance on both measures.
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We also find that the tML appears to face numerical challenges during the optimization pro-
cess. Even in cases where we verify that the tML only considers candidate parameter vectors that
are associated with a unique equilibrium, we find that the optimizer frequently converges to a
wrong answer. These issues do not go away (and often get worse) when we consider alternative
optimization routines. Additionally, with our empirical example we find that very small imple-
mentation differences, including simply changing software versions, result in wildly different
tML estimates. Overall, this level of sensitivity indicates that the equilibrium computation in
the tML’s likelihood creates a highly nonlinear optimization problem that is difficult to solve.
We do not observe these kinds of stability issues with the other methods.

With the above theoretic and numeric concerns in mind, it is worth considering how sensitive
the tML’s performance is to starting values; we investigate this in Appendix E. We find that the
tML’s performance improves if (a) there is a unique equilibrium at the true parameters and

Figure 3. RMSE in signaling estimators with multiple equilibria.

Figure 4. RMSE in signaling estimators with a unique equilibrium.

12 Casey Crisman-Cox and Michael Gibilisco

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
10

 D
ec

 2
01

9 
at

 1
9:

06
:0

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
01

9.
58

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/psrm.2019.58


(b) the tML has starting values that are either the true parameters or the PL estimates. However,
even when initialized with the PL estimates, the tML rarely improves much on, and sometimes
worsens, the PL’s performance, and it is almost always worse than the NPL or CMLE. Overall,
relying on informed starting values and equilibrium uniqueness in the data generating process
is perilous for applied researchers because neither can be verified before estimation.
Furthermore, the PL, NPL, and CMLE perform at least as well as tML and oftentimes much bet-
ter. Before turning our attention to economic sanctions, we report the following conclusions.

1. The tML routine performs the worst in both multiple and unique settings.
2. The NPL and PL methods consistently perform well, but the PL outperforms the NPL

when the number of within-game observations is small, and vice versa when the number
of within-game observations is large. In every experiment, the NPL is less biased than
the PL.

3. The CMLE is almost always the best, but it is the most difficult to implement.

4. Application to economic sanctions
Our application is motivated by Whang et al. (2013, WMK, hereafter) who use the empirical
crisis-signaling game to study the implementation of economic sanctions. They test the hypoth-
eses that greater economic dependence decreases the probability that state B resists and increases
the amount of belief updating, finding substantial support for the former but not the latter. The
game is reproduced in Figure 19 in Appendix F. The outcomes are status quo, concede to the
threat, impose sanctions, and back down, which are denoted SQ, CD, SF, and BD, respectively.

An observation in WMK is a politically relevant directed dyad-decade. In their study, a direc-
ted dyad is politically relevant if there exists at least one sanction threat issued from State A to
State B in the TIES dataset during the 1971–2000 period. Within each directed dyad, WMK
aggregate the dependent variable to be the most extreme outcome within a directed dyad-decade,
dividing the time frame into three groups 1971–80, 1981–90, and 1991–2000.

Like WMK we aggregate covariates xd to the decade level, but unlike WMK, we dis-aggregate the
outcomes ydt to the monthly level (T=120). We treat the observed ydt within each directed dyad-
decade as if they are repeated draws from the same equilibrium.16 Effectively this means that each
game d consists of a decade-level covariate vector xd that is thought to produce each directed
dyad’s monthly interaction over the course of the decade. In terms of our setup, each game is a pol-
itically relevant, directed dyad-decade, and we observe T=120 observations from each game.17

For our purposes, this approach has two important advantages. First, the CMLE procedure
requires within-game multiple observations for identification. Without this setup, we could not
illustrate this estimator even though it performed quite well in the Monte Carlo experiments.
Second, we do not ignore variation within each decade: a directed dyad with only one threat
issued in a decade may be substantially different than one with several threats in the same period.
Thus, our application does not replicate previous analyses but rather highlights the differences
between tML routines and those that we propose.

Following WMK, we use the Final Outcome variable to record the dependent variable, which
denotes how sanction-threat episodes end.18 When there is no episode in a month, we record the

16WMK specify payoff shocks following Whang (2010), discussed in Appendix A, where they also estimate covariance
parameters. These covariance estimates are below 0.07 in magnitude, and WMK fail to reject the null hypothesis that the
covariances are equal to zero.

17This is stricter than WMK’s threshold for political relevance, but using their less restrictive inclusion criteria does not
affect our substantive conclusions on audience costs as we show in Appendix J.

18Note all the action is coded as occurring in the month when the episode starts. If a play of the game actually unfolds over
time, we might be overstating the number of status quo observations. To address this, we also consider a robustness check in
our supplementary information where we redo our analysis at the quarterly level.
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status quo. When Final Outcome records either “acquiescence” by the target or a negotiated
settlement, we record the outcome as B giving into A’s threat (node CD). Likewise, whenever
the Final Outcome variable notes that actual sanctions are imposed, we list A as standing firm
on its threat (node SF). Finally, when Final Outcome denotes that A either “capitulates” or the
situation is unresolved, we list A as backing down (node BD). After dropping irrelevant dyad-
decades, i.e., those with no recorded threats or sanctions, we are left with 418 games, each
with 120 within game observations that span one of the three time frames, 1971–80, 1981–90,
and 1991–2000.19

The independent variables, their sources, and how they enter the actors’ payoffs are listed in
Table 3 in Appendix F, following the specifications in WMK. All variables are measured on the
dyad-decade level as discussed above.20

4.1. Point estimates

Table 2 displays our main results. Each column contains parameter estimates and standard errors
using the different estimators. There are several notable patterns. First, the techniques derived
from the dynamic games literature produce estimates that agree in direction, magnitude, and sig-
nificance. Models 2–4 match signs for 14 out of 21 coefficients, and when we reject a null hypoth-
esis using one estimator, we generally do the same for one of the others. Second, the tML returns
estimates that diverge wildly from the other three. The problem appears particularly bad for coef-
ficients that enter the target state’s concession payoffs, CB.

Not only does the tML routine return different point estimates, it also produces substantive
implications that diverge from the other three estimations. For example, consider audience
costs, i.e., the initiating state’s payoff from backing down, �a. Notice that the relevant constant
term is negative, significant, and large in magnitude in all three models that accommodate
multiple equilibria. This suggests that states or leaders are indeed punished for backing
down after issuing threats.21 In fact, in Models 2–4, we reject the null hypothesis that �a ≥ 0
at the p < 0.05 level in every observation. In contrast, we cannot reject the null hypothesis
that �a ≥ 0 at the p<0.1 level in the tML model for any observation. Our analysis suggests
that researchers may underestimate audience or belligerence costs if estimation techniques
do not accommodate the multiplicity of equilibria.

Overall, our results demonstrate that tML routines can produce point estimates and substan-
tive implications that diverge from our proposed methods. To better illustrate that the differences
are due to equilibrium selection and the computational problems addressed above, we conduct
two additional analyses in Appendix G. First, we fit the sanctions model using a tML routine
that is identical to what we use in Model 1 except for how it computes equilibria. Most surpris-
ingly, the two tML results diverge in both sign (for 9/20 estimates) and significance (for 13/20
estimates). Second, we show the importance of starting values. Perhaps unsurprisingly, when
we use the PL estimates as starting values, the tML improves, but is still worse than the NPL
and CMLE in terms of log-likelihood. Thus, two researchers can reach substantively diverging
conclusions with different software choices even when analyzing identical data sets.

19Some countries enter/exit the data in the 1990s so there are 15 dyads where T is between 72 and 96.
20While there are legitimate concerns associated with aggregating any set of variables to the decade level, we use it in our

main analysis to follow WMK. We show in Appendix I that there is actually very little variation in covariates within each
dyad-decade. In Appendix J we check the analysis with five years T=60 and one year T=12. Finally, we also consider a situ-
ation where both xd and yd are measured at the dyad-year level (T=1). Our coefficients on audience costs remain stable in
sign, significance, and magnitude.

21Note that the estimate captures both belligerence and audience costs (as in Kertzer and Brutger, 2016). We dig deeper
into this in the subsequent section by conducting counterfactuals that isolate the substantive effects of audience costs while
fixing belligerence costs.
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4.2. Audience costs and substantive effects

How do audience costs affect the likelihood of leaders threatening sanctions? In the previous sec-
tion, we demonstrated that tML routines can produce point estimates that diverge wildly from our
solutions. In this section, we analyze the substantive effects of audience costs on the equilibrium
probability of threatening sanctions, pC, illustrating that the tML routines can fail to uncover
important comparative statics. We focus on audience costs because of their importance to the
economic sanctions literature (Martin, 1993; Dorussen and Mo, 2001; Drezner, 2003; Whang
et al., 2013). In addition, previous work has not connected audiences to the likelihood that leaders
threaten sanctions.

We consider the directed dyad in which the US is the initiating state A and China is the target
state B between 1991 and 2000, the most recent decade in the sample. We vary the US’s audience

Table 2. Economic sanctions application

tML Pseudo-Likelihood Nested Pseudo Likelihood CMLE
Model 1 Model 2 Model 3 Model 4

SA: Econ. DepA 0.05 −0.32 −0.22 −0.52
(0.29) (0.67) (0.80) (0.55)

SA: DemA −0.00 0.00 0.03 0.01
(0.00) (0.07) (0.06) (0.03)

SA: Contiguity 0.27∗ 0.01 0.05 0.04∗

(0.10) (0.01) (0.03) (0.01)
SA: Alliance −0.06 −0.18∗ −0.17∗ −0.16∗

(0.08) (0.03) (0.08) (0.07)
VA: Const. −0.06 −0.33 1.60 1.31∗

(0.08) (0.83) (1.30) (0.12)
VA: CostsA −0.04 0.36 −0.05 −0.19

(0.03) (0.24) (0.23) (0.17)
CB: Const. 0.81 −1.12∗ −2.14∗ −4.53∗

(0.91) (0.31) (0.62) (2.24)
CB: Econ. DepB −0.21 2.32∗ 2.34∗ 2.83∗

(0.16) (0.68) (0.90) (0.63)
CB: CostsB −0.08∗ 0.08 0.12∗ 0.19∗

(0.03) (0.06) (0.05) (0.05)
CB: Contiguity −0.25∗ 0.13∗ 0.12∗ 0.10∗

(0.02) (0.04) (0.03) (0.03)
CB: Alliance 0.10 −0.05 −0.03 −0.02

(0.09) (0.13) (0.10) (0.11)
�WA: Const. −0.15 −2.43∗ −2.42∗ −2.46∗

(0.78) (0.10) (0.13) (0.08)
�WA: Econ. DepA 0.07 0.39 0.01 −0.05

(0.75) (0.90) (1.20) (0.18)
�WA: DemA 0.01 0.01 0.04 − 0.00

(0.01) (0.08) (0.07) (0.03)
�WA: Cap. Ratio −0.01 0.02 0.03 0.04∗

(0.01) (0.01) (0.03) (0.01)
�WB: Const. −0.38 0.48∗ −0.91 −4.42

(1.13) (0.22) (0.86) (2.92)
�WB: DemB 0.01∗ −0.00 −0.00 −0.01∗

(0.00) (0.01) (0.01) (0.01)
�WB: Cap. Ratio 0.01 0.11∗ 0.12∗ 0.29∗

(0.01) (0.04) (0.04) (0.09)
�a: Const. −0.56 −2.63∗ −2.64∗ −2.71∗

(0.77) (0.09) (0.12) (0.10)
�a: DemA −0.00 −0.00 0.02 −0.00

(0.01) (0.07) (0.07) (0.03)
Log L −4102.76 −3964.03 −3932.45 −3927.91
D × T 418 × 120 418 × 120 418 × 120 418 × 120

Notes: *p < 0.05. Asymptotic standard errors in parenthesis, see Appendix D.1 for details.
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cost, �a, from − 6 to 0 while fixing the remaining payoffs estimated using the tML and CMLE from
Table 2. For every value of �a, we compute all equilibria using a line-search method. Then we plot
the associated equilibrium probabilities of the US initiating a conflict, pC, in Figure 5. For all
values of �a considered, there is a unique equilibrium, pictured with the black circles. The vertical
line denotes the estimated value of US audience costs, around − 2.7 for the CMLE and − 0.6 for
the tML. Throughout, we fix the other payoffs at their estimated values, thereby implicitly con-
trolling for the other (belligerent) costs leaders face when choosing to start a crisis. Hence, our
analysis allows us to isolate the effects of audience costs from belligerence costs, a traditionally
difficult objective when using experiments or reduced-form analyses (Kertzer and Brutger, 2016).

The figure illustrates three notable results. First, there is substantial difference between the sub-
stantive effects from the CMLE and tML. That is, even with the same theoretical model and data,
the choice of estimation procedure matters. Second, given the CMLE, audience costs have a large
substantive effect on the probability of threat initiation, covering the entire range between zero
and one. These large effects are lost when using the tML estimates. Third, there is a U-shaped
relationship between audience costs and threat initiation. Leaders only initiate threats when audi-
ence costs are very small or quite large. In the former case, leaders do not pay a cost for backing
down and do so with impunity. In the latter case, their threats are quite credible, coercing rivals to
concede with higher probability.22 With intermediate audience costs, however, leaders almost
never threaten rivals with sanctions, as their threats are not credible and backing down entails
nontrivial costs.

Notice that if we were to increase the US’s audience costs beginning from the value estimated
in the data, then the model predicts an increase in sanction threats toward China. That is, the true
value of audience costs tend to fall on the left-hand-side of the U-shaped curve, where larger
(more negative) audience costs increase the likelihood of interstate threats. This pattern gener-
alizes to other observations in the data. We compute the marginal effect of making audience
costs, �a, more negative on the equilibrium probability of issuing threats. Conclusively, larger
(more negative) audience costs increase the likelihood of states threatening their rivals with sanc-
tions. This result holds in 97 percent of observations.

Figure 5. Substantive effects of audience costs in US and China dyad, 1991–2000.

22Appendix H illustrates these additional comparative statics.
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5. Conclusion
In this paper, we analyze problems that emerge when fitting games with multiple equilibria to data
in international relations. We demonstrate that frequently used maximum likelihood routines per-
form poorly when estimating the parameters of the canonical crisis-signaling game not only if there
are multiple equilibria in the signaling game generating the data but also if the equilibrium is
unique. In the former case, without further information, the likelihood function may select the
wrong equilibrium when evaluating different parameter guesses, leading to estimates that do not
increase in accuracy with more observations. In the latter case, the likelihood function will often
be evaluated at parameter guesses under which multiple equilibria exist, leading to similar pro-
blems. Imposing a selection rule does not fix these problems, rather, it makes the estimation prob-
lem more difficult because it introduces discontinuities into the likelihood. Our analysis should give
researchers pause before using these techniques in international relations.

For solutions, we adapt several estimators from the dynamic games literature and show that
they are particularly useful in the crisis bargaining context. In a series of experiments and appli-
cations, we show that all three perform better than the currently used tML routines, but the
CMLE and NPL are consistently good choices. Although the CMLE is far and away the best
choice, it requires repeated within-game observations, which may not be appropriate in all situa-
tions. Additionally, it requires specialized constrained optimization software. In general, we pro-
pose the following advice when estimating crisis-signaling games.

1. Estimate the game with the PL method, using a flexible first-stage estimator. In our experi-
ence, random forests work well.

2. To verify whether bias in the first-stage estimates has affected the second stage, estimate the
game with either the NPL or CMLE approach. If these converge, then they should be prior-
itized. If these do not converge, then the PL results should be prioritized.

3. The tML routine should not be used; it generally performs worse than the other procedures.

We provide R implementations of the PL and NPL estimators in our computational appendix
and in the sigInt package. This accessibility should help researchers to uncover theoretically
informed parameters rather than engaging in more reduced-form analyses.

Finally, the paper raises an important avenue for future research into the empirical crisis-
signaling model. Throughout, we have assumed that within each dyad or game, states play the
same equilibrium for all within unit observations t∈ {1, …, T} and the equilibrium selection is
a deterministic function of covariates. However, it could be the case that the dyad switches equi-
libria over time or equilibria are selected with some noise. Either case would violate an assump-
tion in our analysis, and these would be fruitful directions for future work. A major difficulty in
this area is that current econometric work frequently considers games of complete information or
other settings whether it is possible to enumerate the entire set of equilibria. With incomplete
information and signaling incentives, this task becomes substantially more complicated.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/psrm.2019.58
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A Whang (2010) with multiple equilibria

In this Appendix, we consider a specification of the crisis-signaling game from Whang

(2010), restate equilibrium choice probabilities, and demonstrate that multiple equilibria

can exist under his more general specification. Figure 7 describe the payoffs. Define

1



Figure 7: Crisis-signaling game from Whang (2010)

A

B SQ
(S̄A + εSA, S̄B)

ACD
(V̄A + εV A, C̄B + εCB)

BD(
ā+ εa, V̄B + εV B

)SF(
W̄A + εWA, W̄WB + εB

)

Challenge Not challenge

ResistNot resist

Fight Not fight

εA = (εSA, εV A, εWA, εa) and εB = (εV B, εWB, εCB). We assume εA and εB are inde-

pendent and that εi is drawn from a multivariate normal distribution with mean 0 and

variance-covariance matrix Σi. Furthermore, let θ denote the vector of exogenous pa-

rameters of interest, i.e., θ =
(
ā, CB,

(
Si, Vi, W̄i,Σi

)
i=A,B

)
. As before, Perfect Bayesian

equilibria (equilibria, hereafter) for the game can be represented as choice probabilities,

p = (pC , pR, pF ). To aid in the explication of equilibrium choice probabilities, we introduce

the following notation:

SA = S̄A + εSA

VA = V̄A + εV A

WA = W̄A + εWA

a = ā+ εa

CB = C̄A + εCB

WB = W̄B + εWB

VB = V̄B + εV B.

For a fixed vector of choice probabilities, p, define the following:

∆UpFR = pFWB + (1− pF )VB − CB
∆UpRSQ,BD = SA − (1− pR)VA − pRa

∆UpRSQ,SF = SA − (1− pR)VA − pRWA

∆USF,BD = WA − a

The following result characterizes the equilibrium choice probabilities of this game.

2



Result 2 (Whang, 2010) An equilibrium p̃ exists, and p̃ is an equilibrium if and only if it
satisfies the following system of equations:

p̃C = 1− Φ2

 E[∆UpRSQ,BD]√
Var[∆UpRSQ,BD]

,
E[∆UpRSQ,SF ]√
Var[∆UpRSQ,SF ]

,Cor[∆UpRSQ,BD,∆U
pR
SQ,SF ]

 ≡ g(p̃R; θ),

(11)

p̃F = Φ2

 E[∆USF,BD]√
Var[∆USF,BD]

,
E[−∆UpRSQ,SF ]√
Var[∆UpRSQ,SF ]

,Cor
[
∆USF,BD,−∆UpRSQ,SF

] (g(p̃R; θ))−1 ≡ h(p̃R; θ),

(12)

and

p̃R = Φ

 E[∆UpFR ]√
Var[∆UpFR ]

 ≡ f(p̃F ; θ). (13)

As before fixing a vector of exogenous parameters, θ, equilibria are pinned down by B’s

probability of resisting, where p̃R satisfies f ◦h(p̃R; θ) = p̃R. Given an equilibrium probabil-

ity of resisting, p̃R, A’s probabilities of challenging and fighting are defined using Equations

11 and 12, respectively. Notice that ∆UpFR , ∆UpRSQ,BD, ∆UpRSQ,SF , and ∆USF,BD are en-

dogenous quantities. To fully specify the equilibrium choice probabilities, the proceeding

result states their variances and covariances as functions of the exogenous parameters, θ.

To do so, we maintain the following normalizing assumptions from Whang (2010): S̄A = 0,

Var [εSA] = 0, C̄B = 0, Var [εCB] = 0, Var [ā] = 1, and Var [εWB] = 1.

Result 3 Under the normalization assumption, the following hold.

1. Var[∆UpFR ] = p2
F + (1− pF )2Var[εV B] + 2pF (1− pF )Cov[εV B, εWB]

2. Var[∆UpRSQ,BD] = (1− pR)2Var[εa] + p2
R + 2pR(1− pR)Cov[εV A, εa]

3. Var[∆UpRSQ,SF ] = (1− pR)2Var[εa] + p2
RVar[εWA] + 2pR(1− pR)Cov[εV A, εWA]

4. Var[∆USF,BD] = 1 + Var[εWA]− 2Cov[εa, εWA]

5. Cov[∆UpRSQ,BD,∆U
pR
SQ,SF ] = (1 − pR)2Var[εV A] + (1 − pR)pRCov[εV A, εWA] + pR(1 −

pR)Cov[εV A, εa] + p2
RCov[εa, εWA]

6. Cov[∆UpRSQ,BD,−∆UpRSQ,SF ] = (1−pR)Cov[εV A, εWA]+pRVar[εWA]−(1−pR)Cov[εV A, εa]−
pRCov[εa, εWA].

Using Results 2 and 3, it is straightforward to modify the PL, NPL, and CMLE esti-

mation routines. One additional difficulty arises, however. Currently, we provide analytical

derivatives for optimizers in R. With the additional parameters in ΣA and ΣB, additional

3



derivatives would need to be provided or automatic differentiation could be used. We de-

scribe the latter approach in Appendix D.

Finally, we provide a numerical example where multiple equilibria arise in this more

general model, even outside the assumptions in Lewis and Schultz (2003). For payoffs at

terminal nodes, we choose the values in the first column of Table 1Parameters for Monte

Carlo experimentstable.caption.2. To specify the variance-covariance matrices, σA and σB,

we choose Var[εV A] = 2, Var[εWA] = Var[εV B] = 1
2 , Cov[εV A, εa] = Cov[εV A, εWA] = 0, and

Cov[εa, εWA] = Cov[εV B, εWB] = − 7
10 . Under these parameters, there are three equilibria:

p̃R ∈ {0.01, 0.63, 0.90}.

B Regularity and best-response stability

This Appendix contains the formal arguments for two additional results discussed in

the main manuscript. First we define the regularity refinement from Harsanyi (1973) and

van Damme (1996). We use δ(pR; θ) to denote the first derivative of f ◦ h with respect to

pR given parameters θ.

Definition 1 An equilibrium p̃R is regular if δ (p̃R; θ) 6= 1.

With this definition we can now state our result concerning the regularity of equilibria.

Result 4 For almost all θ, all equilibria of the crisis-signaling game are regular.

To prove the result and subsequent ones, it is more straightforward to work with the

function F : (0, 1)× R8 → R such that

F (pR; θ) = f ◦ h(pR; θ)− pR,

where p̃R is an equilibrium if and only if F (p̃R; θ) = 0. We state two intermediary results

before proving result 4. The first is from Jo (2011a) and the second is the parameterized

Transversality Theorem.

Lemma 1 For all θ, limpR→0 f ◦ h(pR; θ) > 0 and limpR→1 f ◦ h(pR; θ) < 1.

Thus, there are no equilibria at the boundaries. In addition, for any fixed θ, there exists

ε > 0 and ν > 0 such that F (ε; θ) > 0 and F (1− ν; θ) < 0

Theorem 1 (Transversality Theorem) Consider an open set X ⊆ Rn. Let L : X×Rs → Rn
be continuously differentiable. Assume that the Jacobian D(x,y)L has rank n for all (x, y) ∈
X × Rs such that L(x, y) = 0. Then, for almost all y′ ∈ Rs, the Jacobian DxL has rank n
for all x ∈ X such that L(x, y′) = 0.

Proof of Result 4. Note that p̃R is a regular equilibrium if and only if DpRF (pR; θ) 6= 0.

To prove Result 4, we verify the conditions of the Transversality condition, where in our
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application, L = F and (x, y) = (pR; θ), which means n = 1 and s = 8. First, note that

F is continuously differentiable, because f ◦ h is the composition of normal cumulative

distribution functions and polynomial functions, and F is defined over the open interval

(0, 1).

Third and finally, we show that D(pR;θ)F (pR; θ) has at least one non-zero element

(i.e., rank 1) when F (pR; θ) = 0. To do this, we show a stronger result: for all (pR; θ),

D(pR;θ)F (pR; θ) 6= 0. To see this, consider DW̄B
F (pR; θ). By Result 1Jo, 2011aresult.1, the

functions g and h are constant in parameter W̄B, that is, DW̄B
g(pR; θ) = DW̄B

h(pR; θ) = 0.

Then we have

DW̄B
F (pR; θ) = DW̄B

f ◦ h(pR; θ)

= DW̄B
Φ

(
h(pR; θ)W̄B + (1− h(pR; θ))VB − CB

h(pR; θ)

)
= DW̄B

Φ

(
W̄B +

(1− h(pR; θ))VB − CB
h(pR; θ)

)
= φ

(
W̄B +

(1− h(pR; θ))VB − CB
h(pR; θ)

)
6= 0,

which implies D(pR;θ)F (pR; θ) 6= 0 as required.

Although the regularity refinement does not generically reduce the number of equilibria,

showing that all the equilibria are regular is advantageous for applied empirical research.

Regular equilibria can be implicitly expressed as continuous functions of parameters. This

property is particularly important in empirical analyses: if we uncover noisy, but sufficiently

accurate estimates of θ, then equilibrium choice probabilities will be close to their true values

as well. In addition, comparative statics (predicted probabilities) on regular equilibria will

be well behaved, i.e., the equilibrium will not vanish if we vary the data or parameters by

some small amount.

Our next result focuses on best response iteration. Before stating the result, we define

best-response stable and best-response unstable equilibria.

Definition 2 An equilibrium p̃R is best-response stable if there exists ε > 0 such that for
all p0

R ∈ (p̃R − ε, p̃R + ε) the sequence

pkR = f ◦ h(pk−1
R ; θ), k ∈ N

converges to p̃R.

The next definition introduces best-response unstable equilibria, which is not simply the

negation of Definition 2.
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Definition 3 An equilibrium p̃R is best-response unstable if there exists ε > 0 such that
for all p0

R ∈ (p̃R − ε, p̃R + ε), with p0
R 6= p̃R, the sequence

pkR = f ◦ h(pk−1
R ; θ), k ∈ N

leaves the interval (p̃R − ε, p̃R + ε) at least once. That is, there exists n ∈ N such that
pnR /∈ (p̃R − ε, p̃R + ε)

With these definitions, we are now ready to state Results 5.

Result 5 If all equilibria are regular, then following hold:

1. There is a finite number of equilibria.

2. If there are multiple equilibria, then there exists a best-response unstable equilibrium.

To prove Result 5, we need an intermediate result, that is standard in nonlinear dynamics

and fixed point iteration. See Theorem 6.5 in Holmgren (1994).

Theorem 2 Consider an equilibrium p̃R. If |δ(p̃R; θ)| < 1, then p̃R is best-response stable.
If |δ(p̃R; θ)| > 1, then p̃R is best-response unstable.

To end this Appendix, we prove Result 5.

Proof of Result 5(1). By assumption all equilibria are regular, which implies DpRF (p̃R; θ) 6=
0 for all p̃R such that F (p̃R; θ) = 0. Then the Implicit Function Theorem implies that every

equilibrium p̃R is locally isolated. Because F is continuous, it has closed level sets, so

the set of equilibria is closed. Because equilibria fall within the interval (0, 1), the set of

equilibria is bounded, and therefore compact. As a compact set of locally isolated points,

the equilibrium set is finite.

Proof of Result 5(2). Assume all equilibria are regular. By Result 5(1), we can write the

set of equilibria as {p̃[1], . . . , p̃[k]} where k is the number of equilibria. Order the set such

that a < b implies p̃[a] < p̃[b]. By assumption, k ≥ 2, and we claim that p̃[2] is best-response

unstable. To do so, the proof consists of two steps. In step 1, we prove that δ(p̃[1]; θ) < 1. In

step 2, we prove that δ(p̃[2]; θ) > 1, which, by Theorem 2, implies that p̃[2] is best-response

unstable.

Step 1: Suppose not. That is, suppose δ(p̃[1]; θ) ≥ 1. By regularity, δ(p̃[1]; θ) > 1.

Because F is continuously differentiable and DpRF = δ(p̃
[1]
R ; θ)− 1, there exists ε > 0 such

that F is strictly increasing on the interval (p̃
[1]
R −ε, p̃

[1]
R ). Because F (p̃

[1]
R ; θ) = 0, this implies

that there exists a p′R ∈ (p̃R − ε, p̃[1]
R ) such that F (p′R; θ) < 0. By Lemma 1, there exists

ν ∈ (0, p′R) such that F (ν; θ) > 0. Then the Intermediate Value Theorem Implies that there

exists a p̃R ∈ (ν, p′R) such that F (p̃R; θ) = 0, but this contradicts the assumption that p̃
[1]
R

is the smallest equilibrium. Hence, we conclude that δ(p̃[1]; θ) < 1

Step 2: Suppose not. That is, suppose δ(p̃[2]; θ) ≤ 1. Because all equilibria are regular,

δ(p̃
[2]
R ; θ) < 1, implying DpRF (p̃

[2]
R ; θ) < 0. This, along with the facts that F is continuously
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differentiable and F (p̃
[2]
R ; θ) = 0, implies there exists (arbitrarily small) ε > 0 such that

F (p̃
[2]
R − ε; θ) > 0.

In Step 1, we showed that δ(p̃
[1]
R ; θ) < 1. Because F (p̃

[1]
R ; θ) = 0, there exists (arbitrarily

small) ν > 0 such that F (p̃
[1]
R + ν; θ) < 0 because F is continuously differentiable. So we

have F (p̃
[2]
R − ε; θ) > 0 and F (p̃

[1]
R + ν; θ) < 0. Then by the Intermediate Value Theorem

there exists an equilibrium p̃′R such that

p̃
[1]
R + ν < p̃′R < p̃

[2]
R − ε.

But this contradicts the assumption that p̃
[2]
R is the second smallest equilibrium. Thus, we

conclude δ(p̃
[2]
R ; θ) > 1. As such, p̃

[2]
R is best-response unstable by Theorem 2.

C Further Monte Carlo results

C.1 Multiple equilibria

This appendix contains additional results from the Monte Carlo experiment where the

data are generated under parameters that are consistent with multiple equilibria. A single

covariate determines the equilibirum selection. The parameter values used to generate the

data can be found in Table 1Parameters for Monte Carlo experimentstable.caption.2. Here

we consider the estimators’ bias, variance, rate of convergence, and computation time. Root

mean-squared error is presented in the main text.

Figure 8: Bias in signaling estimators with multiple equilibria.
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Figure 9: Variance in signaling estimators with multiple equilibria.
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Figure 10: Convergence rates in signaling estimators with multiple equilibria.
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Figure 11: Computational time in signaling estimators with multiple equilibria.
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C.2 Unique equilibrium

This appendix contains additional results from the Monte Carlo experiment where the

data are generated from a version of the game with a unique equilibrium. The parameter

values used to generate the data can be found in the final column of Table 1Parameters for

Monte Carlo experimentstable.caption.2. Here we consider the estimators’ bias, variance,

computation time, and rate of convergence.

Figure 12: Bias in signaling estimators with a unique equilibrium.
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Figure 13: Variance in signaling estimators with a unique equilibrium.
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Figure 14: Computational time in signaling estimators with a unique equilibrium.
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Figure 15: Convergence rates in signaling estimators with a unique equilibrium.
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Figure 16: RMSE in signaling estimators with more unstable equilibria.

−3

−2

−1

0

1

2

0.00 0.25 0.50 0.75 1.00
Proportion Unstable

L
og

 R
M

SE

Estimator CMLE PL tML NPL

RMSE in Signaling Estimators

C.3 Best-response stability

The best performing solutions make use of best response functions, which begs the ques-

tion: How sensitive are the estimators to best-response unstable equilibria? To answer this

question, we conduct another Monte Carlo experiment. Here, we assume payoffs are gener-

ated as in the multiple setting in Table 1Parameters for Monte Carlo experimentstable.caption.2,

and the equilibrium selection rule follows the left-hand graph in Figure 2The equilibrium

correspondences for numerical examplesfigure.caption.3. Let q ∈ [0, 1] denote the percent-

age of unstable equilibria. For q ·D dyads, xd is draw from a uniform distribution over the

interval (1
3 ,

2
3). For the remaining D−q ·D observations, xd is drawn uniformly from the in-

tervals (0, 1
3) or (2

3 , 1) with equal probability. Using Theorem 2, the middle equilibrium, i.e.,

the one selected when xd ∈ (1
3 ,

2
3), is unstable, while the other equilibria are best-response

stable. As we vary q from 0 to 1, we analyze how the estimators’ performance varies as the

data are generated with a larger proportion of best-response unstable equilibria. In this

experiment, we set D = 200 and T = 1000, which means there is a large amount of data

as to better isolate the effects of unstable equilibria. For all values of q, we draw xd, select

the corresponding equilibria, and estimate the model 1, 000 times. We expect the PL and

NPL to perform worse as q approaches 1.1

Figure 16 summarizes the results, where we vary the percentage of unstable equilibria

along the horizontal axis and plot log RMSE along the vertical axis. Unsurprisingly, the

1Following results from Kasahara and Shimotsu (2012) we check that the spectral radius of the Jacobian
of the best-response function is greater than 1 under these conditions. We find that the NPL should struggle
in all situations where q ≥ 0.01.
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Figure 17: Convergence rates in signaling estimators with unstable equilibria.
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NPL performs much worse in terms of RMSE as more data are generated from the unstable

equilibrium. The PL, tML, and CMLE all get slightly worse as this proportion increases,

but this effect is far less pronounced. Despite the fact that the NPL is designed to struggle

here, it still outperforms the PL when less than 40% of the data are from unstable equilibria.

Of further note, both the PL and NPL still outperform the tML across the board, despite

their reliance on best-response iteration.

Beyond the potential for statistical problems, we also want to consider the compu-

tational issues that arise when unstable equilibria dominate in the data. This trend is

illustrated in Figure 17, where horizontal axis is the proportion of observations with unsta-

ble equilibria and the vertical axis is the proportion of successful Monte Carlo iterations.

Notice, convergence rates of all estimators, besides the PL, decrease once the proportion

of unstable equilibria approaches 60–80%. Thus, conditional on converging, the estimators

return results with fairly reasonable RMSE even with a large proportion of unstable equi-

libria. They are all generally less likely to converge when unstable equilibria permeate the

data, however.

C.4 Multivariable Monte Carlo

In this section we consider a different Monte Carlo experiment designed to better capture

real world situations. Specifically, we use our application to economic sanctions data to

construct an experiment with many variables that appear across different utilities.

To build the experiment we use the same specification and independent variables as

the economic sanctions application above. We then take the CMLE estimates from Table

3Economic sanctions applicationtable.caption.8 and fix them as the true parameter values.
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Using these parameters and the original independent variables we generate a new dependent

variable (of length 120 for each dyad) for each Monte Carlo simulation and refit the model

using tML, PL, NPL, and CMLE.2 For each parameter we then compute the root mean-

squared error (RMSE).

Table 4 shows the relative performance of each or our proposed methods to the tML.

Here, values less than one mean that our estimator does better than the traditional method,

while values greater than one mean than tML performed better on estimating that param-

eter. Values close to zero mean that our approach does a lot better than the tML. All cases

where the tML does better are bolded, which happens in only four cases out of sixty (about

7%).

Overall, the PL has a little trouble with a few parameters in B’s utilities, which is

consistent with our other Monte Carlo results. The NPL and CMLE both do very well

compared to the tML. The last row in Table 4 shows the relative improvement in the

multivariate RMSE, where we see that all three of our approaches are better than the tML

in this experiment.

Table 4: Relative RMSE of Estimates Compared to tML

PL NPL CMLE

SA: Econ. DepA 0.48 0.90 0.61
SA: DemA 0.69 0.42 0.45

SA: Contiguity 0.14 0.07 0.05
SA: Alliance 0.18 0.20 0.20
VA: Const. 0.77 0.35 0.28
VA: CostsA 0.99 0.65 0.59
CB: Const. 0.79 0.51 0.50

CB: Econ. DepB 0.38 0.29 0.22
CB: CostsB 0.52 0.29 0.20

CB: Contiguity 2.43 0.13 0.11
CB: Alliance 0.37 0.40 0.36
W̄A: Const. 0.07 0.03 0.03

W̄A: Econ. DepA 0.98 1.12 0.39
W̄A: DemA 0.41 0.23 0.26

W̄A: Cap. Ratio 0.26 0.22 0.12
W̄B: Const. 1.27 0.83 0.79
W̄B: DemB 6.48 0.58 0.28

W̄B: Cap. Ratio 0.82 0.52 0.37
ā: Const. 0.07 0.04 0.03
ā: DemA 0.44 0.26 0.29

Multivariate RMSE 0.84 0.56 0.52

2Note that in the case of CMLE, this is equivalent to using a parametric bootstrap to build standard
errors.
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D Implementation details

In our economic sanctions application we fit the CMLE using the program IPOPT

(Interior Point OPTimizer), which is an open-source optimizer designed to handle large

scale problems (Wächter and Biegler 2006). In trials, IPOPT has better performance

properties than other optimizers such as sequential quadratic solvers (found in Python’s

scipy.optimize module), a version of the Augmented Lagrangian Method (from R’s alabama

package), and alternative interior-point methods (MATLAB’s fmincon).

The main difficulty in using interior-point methods is that they require an accurate

second derivative of the Lagrangian associated with the problem in Equation 10Constrained

MLEequation.3.10. We find that finite difference approximations are insufficient. As such,

we use the program ADOL-C, software for algorithmic differentiation (AD) (Griewank,

Juedes and Utke 1996; Walther and Griewank 2012), to precisely compute the Hessian.

The AD software allows us to only supply the log-likelihood and constraint function from

Equation 10Constrained MLEequation.3.10. The AD program repeatedly applies the chain

rule to our functions to compute first- and second-order derivatives. In all uses of the

CMLE, we use IPOPT and ADOL-C within Python 2.7.15 on Ubuntu 18.04 by calling the

pyipopt module developed by Xu (2014) and the pyadolc module developed by Walter

(2014), respectively.

D.1 Standard Errors

Following current practices, the tML standard errors are from the outer product of

gradients estimator (sometimes called the BHHH estimator). Asymptotic standard errors

for the other approaches are provided below.

The asymptotic standard errors for the PL estimates follow from standard results on

two-step maximum likelihood estimation (e.g., Murphy and Topel 1985), such that

V̂ar(β̂PL) = Ω̂−1
β + Ω̂−1

β Ω̂pΣ̂Ω̂T
p Ω̂−1

β .

Here Ω̂β and Ω̂p are outer product of gradients estimators and Σ̂ is the estimated first-stage

covariance matrix, such that

Ω̂β = JβPL(β̂PL|p̂R, p̂F, Y,X)TJβPL(β̂PL|p̂R, p̂F, Y,X)

Ω̂p = JβPL(β̂PL|p̂R, p̂F, Y,X)TJpR,pF
PL (p̂R, p̂F|β̂PL, Y,X)

Σ̂ = V̂ar(p̂R, p̂F),

where JxPL is the Jacobian of the PL likelihood with respect to x. In our applications, we use

a non-parametric bootstrap to produce Σ̂, which is the covariance matrix of the first-stage

(random forest) estimates.
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Aguirregabiria and Mira (2007) provide asymptotic standard errors for the NPL esti-

mates that converges after n iterations as

V̂ar(β̂NPL) =
(

Ω̂β + Ω̂p(I− ψ̂T
p )−1ψ̂β

)−1
Ω̂β

(
Ω̂β + ψ̂T

β (I− ψ̂p)−1Ω̂T
p

)−1
.

Here Ω̂β and Ω̂p are still outer product of gradients estimators, but they are now given as

Ω̂β = JβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)TJβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)

Ω̂p = JβPL(β̂NPL|p̂R,n, p̂F,n, Y,X)TJpR,pF
PL (p̂R,n, p̂F,n|β̂NPL, Y,X),

while ψ̂p and ψ̂β are the Jacobians of the best-response function with respect to (pR,pF)

and β, respectively, and evaluated at the NPL estimates.

Finally, the asymptotic standard errors for the CMLE are computed using Silvey (1959,

Lemma 6), such that

V̂ar
((
β̂, p̂R

)
CMLE

)
=

[
Ĥ + ω̂T ω̂ − ω̂T

−ω̂ 0

]−1

1,2,...,D+`

.

Here, Ĥ is the Hessian of the CMLE’s log-likelihood with respect to the full parameter

vector, evaluated at the estimates, ` is the length of β, and

ω̂ = J
(β,pR)
f◦h

(
(p̂R, β̂)CMLE |Y,X

)
is the Jacobian of the CMLE’s equilibrium constraint with respect to the full parameter

vector and evaluated at the estimates. Note that the total size of the matrix is 2D+`, while

the covariance matrix of the full parameter vector is composed of only the first D + ` rows

and columns. The remaining entries relate to the D Lagrange multipliers used to solve the

constrained optimization problem.
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E Traditional ML and starting values

In this appendix, we are interested in the effects that starting values have on the tML’s

performance. To do this, we focus on two questions: why has past work found that the

tML is consistent when the data are generated by a unique equilibrium, and can the tML

be improved by just giving it better starting values?

Regarding the first question, our Monte Carlo experiments demonstrate that the tML

may not be consistent even when there is a unique equilibrium in the signaling game that

is generating the data. The reason such problems arise is that the maximization routine

will oftentimes evaluate the likelihood function at a guess of the parameters where multiple

equilibria arise. In this case, the traditional approach will select an equilibrium in an ad-

hoc fashion, which may encourage the maximization routine to move away from the correct

parameters. This may be surprising as both Jo (2011a) and Bas, Signorino and Whang

(2014) conduct similar Monte Carlo experiments and conclude that the tML performs well

when the data were generated with parameters that admit a unique equilibrium.3

To the best of our knowledge, the differences arise from starting values. In our study,

starting values for θ were drawn from a standard uniform distribution. In Jo (2011a), the

starting values are the true values from the data generating process (Jo 2011b). Although

we were not able to locate replication materials from Bas, Signorino and Whang (2014),

we do conduct an additional Monte Carlo experiment to investigate the possibility that

differences in starting values lead to different results. To do this, we reproduce our Monte

Carlo experiments from the main text, but now we use different starting values for the tML.

First, we follow Jo (2011a) and use the true data generating values as starting values to

see if this accounts for the differences we observed between our results and hers. Second,

we use the PL estimates as starting values to explore if our Monte Carlo results are driven

by choices over starting values. The motivation for this second question is based on the

fact that we use the PL as a launching point for the other methods we consider. The NPL

builds on the PL by construction, and we use the PL estimates as starting values for the

CMLE in order to improve the stability of the constrained optimization problem. These

approaches naturally raise the question of whether the tML can be improved by starting it

at the PL estimates.

Figure 18 graphs the logged RMSE of the estimation procedures as we vary the number

of dyads D and the number of observations T . In a similar manner, Figure 19 reports the

logged RMSE for an experiment where there are multiple equilibria at the true parameters.

Note, that the PL, NPL, and CMLE results in these figures are identical to the results re-

ported in Figures 4RMSE in signaling estimators with a unique equilibriumfigure.caption.5

3Jo (2011a, p. 357) writes “It is easy to see that when there is a unique equilibrium, the estimates get
closer to their true values as the number of observations increases.” Bas, Signorino and Whang (2014, p. 26)
write “All coefficients on average are estimated very close to the true parameter values, and the accuracy of
the estimates increases as the sample size increases.”
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Figure 18: RMSE with a unique equilibrium and different starting values.
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Figure 19: RMSE with multiple equilibria and different starting values.
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and 3RMSE in signaling estimators with multiple equilibria.figure.caption.4, respectively.

There are three major takeaways.

First, starting the tML procedure at the true values greatly improves the tML’s per-

formance. This benefit is most pronounced when there is a unique equilibrium at the true

values. This explains the consistency findings from Jo (2011a) and Bas, Signorino and

Whang (2014). However, these values are not known a priori in practice, which limits the

usefulness of this result.

Second, starting the tML procedure at the PL estimates offers some improvement over

the results in the main text. However, the improvements are not enough to make the tML

a justifiable method. In practice, the tML only notably better than the PL when it has: (i)

informative starting values, (ii) there is a unique equilibrium in the data generating game,

and (iii) there are many within-game observations. If any of these three conditions fails,

the PL tends to be at least as well and is sometimes better than the tML while the NPL

is almost always better and the CMLE is always better. Given that we can never know if

condition (ii) holds, the tML is never a good choice.

Third, if all three of the above conditions hold, the CMLE is a better choice than the

tML with PL starting values. The only approach that rivals the CMLE when there are

multiple within-game observations is when conditions (ii) and (iii) hold and the procedure

is started at the true parameter values. Of course, we never have the true values to use as a

starting point, and we still never know if condition (ii) holds. As such, our main conclusions

hold even when we try to improve the tML by starting it at the PL values.
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Figure 20: Log-likelihood function with an imposed selection rule
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F Additional problems with traditional ML

F.1 Discontinuous likelihood

As mentioned in the main text, ad hoc equilibrium selection is one possible solution to

the tML’s troubles. However, such a modification introduces discontinuities into the tML’s

log-likelihood function. We demonstrate this in Figure 20. Here, we graph the log-likelihood

as a function of the parameter β̂1
W̄B

(the true value is β1
W̄B

= −2.9), where data are gen-

erated using the values in Table 1Parameters for Monte Carlo experimentstable.caption.2,

column 1, the equilibrium selection in Figure 2The equilibrium correspondences for numer-

ical examplesfigure.caption.3, and D ∈ {1, 10} with T = 200.

The main thing to note here is that not only are there discontinuities in the log-

likelihood, but also that the number of discontinuities is increasing in D. In many interna-

tional relations studies, the number of dyads under consideration can be in the hundreds

or thousands. Having a likelihood function with that many jumps in it is extremely dif-

ficult to optimize using ordinary means. Global methods are a possibility here, but the

computational cost is cost-prohibitive compared to the PL, NPL, or CMLE.

F.2 Sensitivity to implementation choices

Table 5 illustrates the sentivity of the tML routine to different implementation choices.

In the first column, we reprint Model 1 from the main text where the tML routine uses a

Newton solver to compute an equilibrium for each dyad d and each guess of the parameter

value θ. In Model 5, we change the equilibrium selection method used in the tML. Here,

for each guess of the parameter values and for each dyad, we compute all equilibria and

choose the equilibrium that maximizes B’s probability of resisting, i.e., p̃dR. Starting values

and other implementation choices for these routines were identical. In Model 6, we use

the equation solver from Model 1, but we change the starting values for the optimization

procedure, where starting values were those from the CMLE estimates in the main text.
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Table 5: tML with different solvers and starting values

tML tML tML
Newton Solver Select Largest Eq. PL start values

Model 1 Model 5 Model 6

ā: Const. −0.56 −0.76∗ −2.73∗

(0.77) (0.14) (0.16)
ā: DemA −0.00 0.06∗ −0.00

(0.01) (0.01) (0.09)

Log L -4102.76 -4302.08 -3950.49
D × T 418× 120 418× 120 418× 120

Notes: ∗p < 0.05

Standard Errors in Parenthesis

The main thing to note in Table 5, is that implementation choices lead to very different

substantive results. In the first column, the model finds no evidence for audience costs of

any kind. In the second column, both the constant and democracy are significant, while

third model is more similar to the results from our proposed approaches, but still has a

worse fit (in terms of log-likelihood value) than either the NPL or CMLE.
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Figure 21: Effects of audience costs on the U.S. and China dyad, 1991–2000

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

−6 −5.4 −4.8 −4.2 −3.6 −3 −2.4 −1.8 −1.2 −0.6 0
USA Audience Costs, a

P
ro

b.
 o

f F
ig

ht
in

g,
 p

F

Comparative Statics: USA−CHN, 1990

Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given the results
in Table 3Economic sanctions applicationtable.caption.8, Model 4. We then plot equilibrium probability
that the U.S. imposes sanctions conditional on having threatened to do so, pF . The orange diamond denotes
the equilibrium estimated using the CMLE; there is a unique equilibrium for all displayed values of ā.

G Additional Comparative Statics

We analyze additional comparative statics on the U.S.–China–1990 dyad. Figure 21

plots the conditional probability that U.S. fights, pF , as a function of its audience costs.

The U.S. is more likely to fight as its audience cost increase (become more negative). Figure

22 plots the conditional probability that China resists a U.S. threat, pC , as a function of

U.S. audience costs. It shows that China is less likely to resist as the U.S. has larger (more

negative) audience costs. Figure 23 plots the probability that we observe sanctions in

equilibrium as a function of U.S. audience costs. It shows an inverse-U shaped relationship.

When U.S. audience costs are very small (close to zero), sanctions are very unlikely as the

U.S. will back-down at the final decision node. When U.S. audience costs are very large

(very negative), sanctions are less likely as China is likely to concede after observing a U.S.

threat. When audience costs are moderate, not only is the U.S. not likely to back down

but China is also likely to resist threats from the U.S., leading to a higher probability of

sanctions.
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Figure 22: Effects of audience costs on the U.S. and China dyad, 1991–2000
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Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given the results
in Table 3Economic sanctions applicationtable.caption.8, Model 4. We then plot equilibrium probabilities
of resisting conditional on the US challenging, pR. The orange diamond denotes the equilibrium estimated
using the CMLE; there is a unique equilibrium for all displayed values of ā.

Figure 23: Effects of audience costs on the U.S. and China dyad, 1991–2000
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Caption: For each fixed ā, we compute all equilibria in the USA-CHN-1990 directed dyad given the results
in Table 3Economic sanctions applicationtable.caption.8, Model 4. We then plot the probability of observing
sanctions in equilibrium, pCpRpF . The orange diamond denotes the equilibrium estimated using the CMLE;
there is a unique equilibrium for all displayed values of ā.
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H Decade-level variables

In this section, we demonstrate that the independent variables we consider the economic

sanctions application experience little variation over the course of each country- or dyad-

decade. For country-level covariates, we only consider polity2 scores for each state. All other

variables are dyadic. In Figure 24, we show that these variables experience little change

over our aggregation periods we plot each variables year-to-year deviation from its decade

mean. For all variables, the mean and median values of these distributions are centered at

zero and there is very little deviation from the spikes at zeros. Overall, we conclude that

the decade-level aggregation for the independent variables is reasonable.

Figure 24: Histograms of within-decade deviations from the mean
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I Robustness checks

I.1 Quarterly Data

Table 6 considers the results of the PL, NPL, and CMLE when we aggregate our depen-

dent variable at the quarterly rather than monthly level. Here xd continues to be dyadic-

covariates aggregated to the decade level, and yd continues to reflect the distribution over

outcomes over each decade. The only difference is that the outcomes are now measured

every at quarter year intervals. This check ensures that our audience cost results are not

driven by either having too many status quo outcomes or by ignoring situations where an

episode lasts multiple months.

Table 6: Economic sanctions application – Quarterly Play

PL NPL CMLE
Model 7 Model 8 Model 9

ā: Const. −2.23∗ −2.23∗ −2.32∗

(0.10) (0.16) (0.11)
ā: DemA 0.00 0.03 0.01

(0.08) (0.10) (0.04)

Log L -3208.86 -3180.23 -3177.05
D × T 418× 40 418× 40 418× 40

Notes: ∗p < 0.05

Standard Errors in Parenthesis

I.2 Relaxing political relevance

Table 7 considers the results of PL and NPL estimation on a larger sample. The CMLE

struggled to converge here and is omitted. This sample uses a more relaxed definition of

political relevance to better match WMK. Here, any dyad-decade is included so long as a

sanctions threat exists in any of the three dyad decades considered in the data. We focus

on just the audience cost parameters, as they represent our substantive interest.

I.3 Different levels of aggregation

In this section, we consider how our main results change with different levels of aggre-

gation. Recall that in our main analysis we follow Whang, McLean and Kuberski (2013)

and consider decade-level data. In that data, a single observation d is a set of decade-level

covariates xd and a distribution over outcomes yd that describe 120 months of interaction.

We now try different levels of aggregation to ensure that our audience cost results are not

driven by these aggregation choices. As before, the coefficients of the non-audience cost

parameters are suppressed for space.
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Table 7: PL and NPL estimates with WMK’s definition of Politically Relevant

PL NPL
Model 10 Model 11

ā: Const. −2.86∗ −2.89∗

(0.09) (0.11)
ā: DemA 0.01 0.02

(0.02) (0.04)

Log L -4582.57 -4425.01
D × T 1012× 120 1012× 120

Notes: ∗p < 0.05

Standard Errors in Parenthesis

Table 8 considers the results of the PL, NPL, and CMLE when the variables are aggre-

gated to the 5 year marks. Here, each observation d is a set of five-year-level covariates xd

and yd now describes the distribution of outcomes over T = 60 months of interaction. In

terms of sign, significance, and general magnitude the results hold.

Table 8: Economic sanctions application: Dyad-5 years

PL NPL CMLE
Model 12 Model 13 Model 14

ā: Const. −2.43∗ −2.44∗ −2.48∗

(0.15) (0.17) (0.08)
ā: DemA −0.02 −0.01 −0.04

(0.10) (0.08) (0.04)

Log L -3624.33 -3608.93 -3606.40
D × T 479× 60 479× 60 479× 60

Notes: ∗p < 0.05

Standard Errors in Parenthesis

The next situation we consider it in Table 9, where we aggregate to the dyad-year

level. Here, each observation d is a set of year-level covariates xd and yd now describes the

distribution of outcomes over T = 12 months of interaction. In terms of sign, significance,

and general magnitude the results hold.

As an additional check we also consider a more ordinary dyad-year analysis in Table 10.

Here, each observation d is once again aggregated to the dyad-year-level, but now we assume

that there is only a single play of the game within each year (T = 1). This means that

yd now describes just a single discrete outcome, rather than a distribution over observed

outcomes within the aggregation period. This analysis requires us to use the expanded

definition of political relevance from Appendix I.2 and does not allow for using the CMLE.

Additionally, reducing yd to just record a single event per year introduced what appears to

be separation bias in the estimates related to VA. To avoid any numerical issues, we drop
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Table 9: Economic sanctions application: Dyad-year (T = 12)

PL NPL CMLE
Model 15 Model 16 Model 17

ā: Const. −1.89∗ −1.90∗ −1.88∗

(0.41) (0.39) (0.09)
ā: DemA −0.03 −0.03 −0.02

(0.31) (0.22) (0.04)

Log L -2712.91 -2717.31 -2715.36
D × T 577× 12 577× 12 577× 12

Notes: ∗p < 0.05

Standard Errors in Parenthesis

Table 10: Economic sanctions application – Dyad-year (T=1)

PL NPL
Model 18 Model 19

ā: Const. −1.97∗ −1.78∗

(0.10) (0.32)
ā: DemA 0.10 0.09

(0.11) (0.27)

Log L -2648.23 -2388.09
D × T 9651× 1 9651× 1

Notes: ∗p < 0.05

Bootstrapped standard errors in parenthesis

the offending estimates and bootstrap the standard errors for this robustness check. As

before, the coefficients on audience costs are effectively unchanged.
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J R code

Below we list the basic code required to implement the tML, PL, and NPL. The PL

and NPL are also available in the R package sigInt. The complete code used to replicate

this entire paper can be found in the replication archive.

1 ## This file contains code for the EQ constraint in Jo (2011).

2 ## It also includes functions for generating data and functions

3 ## necessary to implement the PL and NPL estimators.

4 ## Additional packages: pbivnorm, rootSolve, maxLik

5 ## NOT INCLUDED: gradients and standard errors.

6 ## These can be found in the replication archive.

7

8 ################## HELPER FUNCTIONS ##################

9 vec2U.regr <- function(x,regr){

10 ## Function for converting parameters and regressors to

11 ## utilities over outcomes

12 ## INPUTS:

13 ## x: vector of regression parameters (betas) in the order SA, VA, CB, barWA, barWB,

bara, VB

14 ## regr: a list of regressor matrices, one for each utility in the same order as x

15 ## OUTPUTS:

16 ## param: A list of utilities in the same order as regr.

17 ## Each element of this list is a vector of length equal

18 ## to the number of games.

19

20

21 ## create indices to appropriately sort the elements of x

22 ## into the correct outcomes.

23 idx0 <- lapply(regr, ncol)

24 idx0 <- sapply(idx0, function(x){if(is.null(x)){0}else{x}})

25 idx1 <- cumsum(idx0)

26 idx0 <- idx1-idx0+1

27 idx <- rbind(idx0, idx1)

28 idx[,apply(idx, 2, function(x){x[1]>x[2]})] <- 0

29 idx[,apply(idx, 2, function(x){x[1]==x[2]})] <- rbind(0,idx[1,apply(idx, 2, function(x){

x[1]==x[2]})] )

30

31 indx <- list(idx[1,1]:idx[2,1],

32 idx[1,2]:idx[2,2],

33 idx[1,3]:idx[2,3],

34 idx[1,4]:idx[2,4],

35 idx[1,5]:idx[2,5],

36 idx[1,6]:idx[2,6],

37 idx[1,7]:idx[2,7])

38 indx <- lapply(indx,

39 function(x){

40 if(0 %in% x){

41 return(x[length(x)])

42 }else{

43 return(x)

44 }

45 }

46 )

47

48

49 ## Create the utilities using simple X * beta

50 param <- list(barWA = regr[[4]] %*% x[indx[[4]]],
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51 barWB = regr[[5]] %*% x[indx[[5]]],

52 bara = regr[[6]] %*% x[indx[[6]]],

53 VA = regr[[2]] %*% x[indx[[2]]],

54 VB = regr[[7]] %*% x[indx[[7]]],

55 SA = regr[[1]] %*% x[indx[[1]]],

56 CB = regr[[3]] %*% x[indx[[3]]],

57 sig = 1)

58 param <- lapply(param, as.numeric)

59 return(param)

60 }

61

62 ## Functions from Jo (2011)

63 cStar.jo <- function(p, U){

64 ## returns c*, a value that appears frequently

65 ## p are the equilibrium probabilities p_R

66 return((U$SA - (1-p)*U$VA)/p)

67 }

68

69

70 g.jo <- function(c,U){

71 ## returns p_C for a given value of c (from cStar.jo, above) and U

72 v1 <- (c-U$barWA)/U$sig

73 v2 <- (c-U$bara)/U$sig

74 return(1 - pnorm(v1)*pnorm(v2))

75 }

76

77

78 h.jo <- function(c, U){

79 ## returns p_F for a given value of c (from cStar.jo, above) and U

80 d1 <- (U$barWA - U$bara)/(U$sig*sqrt(2))

81 d2 <- (U$barWA - c)/(U$sig)

82 return(pbivnorm(d1, d2,rho=1/sqrt(2)))

83 }

84

85 f.jo <- function(p, U){

86 ## returns p_R for a given value of p_F (from h.jo, above) and U

87 return(pnorm((p*U$barWB + (1-p)*U$VB - U$CB)/(U$sig*p)))

88 }

89

90 const.jo <- function(p, U){

91 ## Function to compute the equilibirum constraint p_R - f(h(p_R)

92 c <- cStar.jo(p,U)

93 g <- g.jo(c,U)

94 g[g<=.Machine$double.eps] <- .Machine$double.eps ##numeric stability

95 j <- h.jo(c,U)/g

96 return(p - f.jo(j,U))

97 }

98

99

100 eqProbs <- function(p, U,RemoveZeros=F){

101 ## This function generates p_C and p_F from equilibrium

102 ## probability p_R

103 ## INPUTS:

104 ## p: p_R (the equilibrium)

105 ## U: Utilities (from vec2U.regr, above)

106 ## RemoveZeros: Boolean, should the function check for numeric issues?

107 ## OUTPUTS: A matrix of M by 3 (M is the number of games)

108

109 ck <- cStar.jo(p,U)
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110 pC <- g.jo(ck, U)

111 if (RemoveZeros){

112 pC[pC <= .Machine$double.eps] <- .Machine$double.eps

113 }

114 pF <- h.jo(ck, U)/pC

115 return(cbind(p, pC, pF))

116 }

117

118 ################## Objective functions ##################

119

120 QLL.jo <- function(x,PRhat,PFhat,Y,regr){

121 ## Pseudo-log-likelihood for two step method

122 ## INPUTS:

123 ## x: vector of current parameter guesses in order (beta,p)

124 ## PRhat: First stage estimates of p_R

125 ## PFhat: First stage estimates of p_F

126 ## Y: 4 by M matrix of tabulated outcomes

127 ## regr: list of regressors for each utility function

128 ## OUTPUTS:

129 ## QLL: negative of the PLL for this set of parameters

130

131 U <- vec2U.regr(x,regr)

132 PR <- f.jo(PFhat, U)

133 PR[PR<=.Machine$double.eps] <- .Machine$double.eps

134 PC <- g.jo(cStar.jo(PRhat,U),U)

135 PC[PC<=.Machine$double.eps] <- .Machine$double.eps

136 PF <- h.jo(cStar.jo(PRhat,U),U)/PC

137

138 OUT <- cbind(1-PC,

139 PC*(1-PR),

140 PC*PR*PF,

141 PC*PR*(1-PF))

142 OUT[OUT<=sqrt(.Machine$double.eps)] <- sqrt(.Machine$double.eps)

143 QLL <- sum(log(t(OUT))*Y)

144 return(-QLL)

145 }

146

147

148 LL.nfxp <- function(x, Y,regr){

149 ## Log-likelihood function for the Nested Fixed Point

150 ## INPUTS:

151 ## x: vector of current parameter guesses in order (beta,p)

152 ## Y: 4 by M matrix of tabulated outcomes

153 ## regr: list of regressors for each utility function

154 ## OUTPUTS:

155 ## LL: negative of the log-likelihood for this set of parameters

156

157 M <- dim(Y)[2]

158 U <- vec2U.regr(x,regr)

159

160 ## compute AN equlibrium

161 f <- function(p){const.jo(p,U)}

162 grf <- function(p){diag(1-eval_gr_fh(p,U))}

163 out <- multiroot(f, rep(.5, M), jacfunc=grf, jactype="fullusr",

164 ctol=1e-6,rtol=1e-6,atol=1e-6)

165

166 EQ <- eqProbs(out$root,U)

167 OUT <- cbind(1-EQ[,2],

168 EQ[,2]*(1-EQ[,1]),
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169 EQ[,2]*EQ[,1]*EQ[,3],

170 EQ[,2]*EQ[,1]*(1-EQ[,3]))

171 OUT[OUT<=sqrt(.Machine$double.eps)] <- sqrt(.Machine$double.eps)

172 LL <- sum(log(t(OUT))*Y)

173 return(-LL)

174 }

175

176 npl <- function(pl.hat, Phat, Y, regr, maxit=500, tol=1e-5){

177 ## Estimates the NPL model starting at PL estimates.

178 ## INPUTS:

179 ## pl.hat: vector of beta estimates from the PL model

180 ## Phat: length 2 list of first stage estimates, PRhat and PFhat

181 ## Y: 4 by M matrix of tabulated outcomes

182 ## regr: list of regressors for each utility function

183 ## maxit: Maximum number of iterations

184 ## tol: User specified step tolerance for (beta, pR, pF)

185 ## OUTPUTS:

186 ## npl.out: List containing

187 ## - NPL estimates (beta)

188 ## - Final best response update of pR

189 ## - Final best response update of pF

190 ## - Convergence code

191 ## + 1: Gradient close to zero at final inner step

192 ## + 2: Step tolerance statisfied at final inner step

193 ## + -69: Maximum out iterations exceded

194 ## + -99: Other error

195 ## - Number of outer iterations

196

197 #Setup

198 eval <- Inf

199 iter <- 0

200 out.NPL <- list(estimate = pl.hat)

201 fqll <- function(x){ #PL likelihood

202 -QLL.jo(x, Phat$PRhat, Phat$PFhat, Y, regr)

203 }

204 gr.qll <- function(x){ #PL gradient

205 -eval_gr_qll(x, Phat$PRhat, Phat$PFhat, Y, regr)

206 }

207 while(eval > tol & iter < maxit){

208 Uk <- vec2U.regr(out.NPL$estimate, regr)

209 Pk.F <- eqProbs(Phat$PRhat, Uk, RemoveZeros = T)[,3]

210 Pk.R <- pnorm((Phat$PFhat*Uk$barWB + (1-Phat$PFhat)*Uk$VB - Uk$CB)/Phat$PFhat)

211 Phat.k_1 <- Phat

212 Phat <- list(PRhat = Pk.R, PFhat = Pk.F)

213

214 #normalize

215 Phat$PRhat <- pmin(pmax(Phat$PRhat, 0.0001), .9999)

216 Phat$PFhat <- pmin(pmax(Phat$PFhat, 0.0001), .9999)

217

218 out.NPL.k <- try(maxLik(start=out.NPL$estimate, logLik=fqll, grad=gr.qll, method="NR

"))

219 if(class(out.NPL.k[[1]])=="character" || out.NPL.k$code==100){ #maxLik failure

220 out.NPL <- out.NPL.k

221 break

222 }

223 out.NPL.k$convergence <- out.NPL.k$code

224 eval <- mean((c(out.NPL.k$estimate, unlist(Phat)) -c(out.NPL$estimate,unlist(Phat.k

_1)))^2)

225 out.NPL <- out.NPL.k
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226 iter <- iter + 1

227 }

228 if(class(out.NPL[[1]])=="character"|| out.NPL.k$code==100){ #if there was a failure

229 out.NPL$estimate <- rep(NA, 6)

230 out.NPL$convergence <- -99

231 out.NPL$iter <- -99

232 }else{

233 out.NPL$convergence <- ifelse(iter==maxit, -69, out.NPL$convergence)

234 out.NPL$convergence <- ifelse(eval==0, -99, out.NPL$convergence)

235 }

236 npl.out <- list(par = out.NPL$estimate,

237 PRhat = Phat$PRhat,

238 PFhat = Phat$PFhat,

239 convergence = out.NPL$convergence,

240 iter = out.NPL$iter)

241 return(npl.out)

242 }
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