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1 Introduction

The maintenance of public order is a key task for all polities and a precondition for eco-

nomic development and peaceful relations between citizens (Olson 1993). For these reasons,

societies frequently feature specialized agencies that are tasked with enforcing laws. Most

prominently, this is the police, but in the United States for example, other law enforcement

agencies include the Drug Enforcement Administration, Customs and Border Protection,

or the Bureau of Alcohol, Tobacco, Firearms and Explosives. Besides maintaining public

order, they are also often asked to keep accurate records of illicit behavior and enforcement

outcomes. Thus, these kinds of agencies have a dual role in creating data: they behave in

a certain way, thus affecting outcomes, and they record these outcomes for their own and

other actors’ use. For example, police departments enforce local laws, e.g., issue speeding

tickets or patrol neighborhoods, and keep records such as crime statistics.

These law enforcement statistics play a key role in the public discourse and in scholarly

work. For example, whether crime increased or decreased can be an important determinant

for electoral choices and outcomes (Arnold and Carnes 2012). Scholars also use crime

statistics to investigate the extent to which there is racial bias in police stops (Fryer Jr

2019; Knox, Lowe and Mummolo 2020) or to quantify the effects of policing (Blair et al.

2021; Levitt 2002), sanctions (Bell, Jaitman and Machin 2014; Kovandzic, Vieraitis and

Boots 2009), or gun control (Dube, Dube and Garćıa-Ponce 2013; Duggan 2001). Similarly,

statistics published by immigration agencies play a role in analyzing if restrictive migration

policies are effective or not (Czaika and Hobolth 2016).

Both scholars and practitioners worry about the dual role of enforcement agencies in data

creation. Agents in charge of creating records may be tempted to tamper with reports in

order to avoid accountability for improper behavior or to increase the chances of influencing

political decisions, such as their agency’s future funding or voters’ electoral choices. While

systematic evidence of manipulated crime statistics is, by their nature, difficult to gather,

anecdotal evidence suggests that manipulated crime statistics can be a salient problem.

One notable example is documented by whistle-blower Adrian Schoolcraft, a former officer

in the New York City Police Department. When his superiors remained unresponsive to his

concerns about the accuracy of crime statistics, he provided audio recordings to the press

that revealed the extent to which police officers were under intense pressure to find ways to

lower reported crime (Reuters 2012).1 Notably, officers were told to

“refuse certain robbery reports in order to manipulate and lower official crime

statistics so that the neighborhood appeared safer. Command precinct person-

1This seems to be a persistent problem in New York City. For example, in 2004, in the midst of
bargaining over higher wages, police union leaders argued that the city’s crime statistics were falsified by
local police officers (New York Times 2004). Similar stories appear in other major cities (British Broadcasting
Corporation 2013; Dallas Morning News 2020; Los Angeles Times 2015).
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nel recount calling crime victims to discourage them from making complaints.

Officers were encouraged to downgrade felony thefts to petty larcenies or mis-

demeanors. Officers were instructed to convert robbery reports to the category

of lost property” (Eterno and Silverman 2017, 4).

Given the prominence of law enforcement statistics in both scholarly work and public

discourse, it is important to understand to what extent such misreporting incentives affect

the quality of data and inferences. Unfortunately, social scientists currently lack a theoret-

ical framework that explicitly models both the actual incidence of crime and the reported

incidence of crime. Developing such a framework faces two important challenges. First, the

actual incidence of crime is tainted by strategic interaction between law enforcement offi-

cers and citizens pondering whether or not to engage in illicit behavior. Hence, actual law

enforcement statistics are driven by both expected and actual illicit behavior and enforce-

ment effort. Second, if law enforcement officers have signaling concerns when submitting

their reports, i.e., they anticipate that crime reports allow other actors to learn about their

behavior or characteristics, then the benefits of misreporting are not exogenous. The reason

is that the credibility of reported crime depends on third-party actors’ beliefs about actual

crime incidence. This creates a link between actual and reported crime and a dependency

in officers’ enforcement and reporting behavior.

Taking into account these challenges, we provide a game-theoretic model of law enforce-

ment behavior and reporting. Consistent with the dual role of enforcement agencies, the

model consists of two stages: an enforcement stage that represents an encounter between

an agent and a potential citizen target, and a subsequent reporting stage in which the agent

can potentially misrepresent the enforcement outcome. We characterize equilibria of the

game and use the characterization to derive substantive implications about measurement

error in crime statistics and bias when estimating causal effects on crime outcomes.

Our game proceeds as follows: in the enforcement stage, the target and the agent play

an inspection game in which the target chooses whether or not engage in illicit behavior, and

the agent chooses to exert high or low enforcement effort. Behavior in the enforcement stage

determines a binary law enforcement statistic, i.e., either a crime was committed or not. For

much of the analysis, we assume that illicit behavior by the target increases the likelihood of

the statistic indicating a crime whereas agent effort decreases the likelihood of the statistic

indicating a crime.2 The agent observes the true crime statistic; she subsequently decides

how to record it in the reporting stage. Crime can be reported even if it did not occur (“over-

reporting”), or no crime can be reported even if it occurred (“under-reporting”). The target

faces some (opportunity) costs of engaging in illicit behavior but may be tempted to do so

if he anticipates low agent effort. The agent wishes to prevent crime, but exerting effort

2We also consider an alternative version of the model in which, all else equal, enforcement effort increases
the likelihood of the statistic indicating a crime, e.g., speeding tickets.

2



is costly. Moreover, the agent also wishes to signal that she exerted effort. Specifically,

the agent internalizes the posterior probability of exerting effort conditional on the reported

crime statistic. The assumption is consistent with the presence of a third-party actor, such

as a relevant community or politician, who observes the reported crime statistic, and decides

on a level of support or funding.3 The agent cares about support, and the optimal support

level increases in the posterior assessment of the agent exerting effort. Finally, tampering

with data is costly (e.g., the agent faces the possibility of audits), so whenever the agent

does not report the true crime statistic, she incurs some costs.

In the game’s equilibrium, the enforcement and reporting stages are intertwined. When

the agent reports, she is tempted to lie when doing so means that she increases the posterior

probability of high effort. If policing effort decreases the crime statistic, then conditional on

a crime occurring, the agent is tempted to cover it up by reporting that no crime occurred.

If policing effort increases the crime statistic (as with speeding tickets for example), then

conditional on no crime occurring, the agent is tempted to inflate crime numbers by over-

reporting. In either case, the exact incentive to lie depends on the difference in posteriors

after the two potential reports, which depends on the equilibrium probability that the agent

exerts effort. Conversely, the reporting stage also affects the enforcement stage. The agent

anticipates that her effort choice influences the crime statistic and hence the opportunity

(or necessity) to manipulate data when reporting. Furthermore, we show that there exist

complementarities between incentives for enforcement effort and incentives to misreport in

equilibrium.

Besides elucidating the incentives for enforcement effort with endogenous reporting, we

find three key results. First, despite the fact that, separately, the reporting (sub)game and

the enforcement game have a unique equilibrium, taken together, the game can have mul-

tiple equilibria. The reason is that the reporting stage influences the enforcement stage to

such an extent that expectations can be self-fulfilling. When high effort is expected, exert-

ing high effort can be profitable for the agent because a subsequent report of no crime will

signal high effort. When low effort is anticipated, in contrast, exerting high effort may not

be profitable because a report of no crime will signal either misreporting or little criminal

activity. Such a finding has two important implications. First, even with identical charac-

teristics, law enforcement organizations can differ widely in terms of both the accuracy of

reports as well as their enforcement behavior because equilibrium expectations determine

enforcement and reporting outcomes. Our result therefore resonates with empirical work

emphasizing the importance of “culture,” i.e., the importance of leadership and managerial

expectations, for the workings of police departments (Cordner 2017; Ingram, Terrill and

Paoline 2018; Johnson 2015; Terrill, Paoline and Manning 2003). Second, theories of polic-

ing often model deterrence using inspection games which generally have unique predictions

3We provide a more extensive discussion of this assumption below.
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about equilibrium behavior (Avenhaus, Von Stengel and Zamir 2002). In contrast, our in-

spection game with endogenous reporting can have multiple equilibria and more complicated

comparative statics even when the underlying inspection and reporting games are simple.

Misreporting can therefore complicate efforts that use equilibrium properties to estimate

the preferences of police (as in Antonovics and Knight 2009; Knowles, Persico and Todd

2001; Stashko 2022, for example).

Second, in contrast to existing intuitions (e.g., Cook and Fortunato 2022), we show that

an increase in the agent’s data manipulation costs can both increase or decrease data quality.

We consider two substantively different notions of data quality: the ex-ante probability

of misclassification and the difference between the probability of a true crime and the

probability of a reported crime. We show that in our framework, these notions coincide, and

data quality is the probability that the enforcement stage produces the outcome in which the

agent lies multiplied by the probability with which the agent actually misreports given this

outcome. Thus, measurement error is a function of both behavior in the enforcement game

(illicit activity and agent effort) and misreporting. An increase in data manipulation costs

has a direct effect of decreasing misreporting, but the agent also increases her level of effort.

This decreases the frequency with which the state in which the agent lies occurs (which

further reduces measurement error), but increases the credibility of the agent’s report. As a

result, the agent manipulates more often, and this indirect effect can offset the other effects.

Hence, a policy intervention aimed at increasing data quality by making it more costly to

tamper with data can backfire.

Third, we characterize the bias when computing causal effects, and demonstrate that it

can be positive or negative. Specifically, our model allows us to compute treatment effects

on both true and observed crime statistics. We demonstrate that the treatment effect of

a parameter on observed crime is an additive function of the treatment effect on actual

crime and a bias term. Importantly, the bias is equal to (the negative of) the effect of the

parameter on equilibrium measurement error. Hence, if a variable increases or decreases

measurement error either directly or indirectly, the bias term will not be zero. This result is

relevant for any study that uses administrative law enforcement statistics in order to assess

the causal effect of various political and economic variables on crime.4

To illustrate it, we apply this result to the voluminous literature that investigates how

opportunity costs affect criminal behavior as measured by crime statistics—see Khanna

et al. (2021) and Bell, Bindler and Machin (2018) for examples and Draca and Machin

(2015) for a review. Consistent with the general result, the observed treatment effect

can be higher or lower than the true treatment effect. The reason is that the treatment

4For example, Di Salvatore (2019) analyzes the effect of United Nations peacekeepers on crime. Charnysh
(2019) shows that migrant diversity has a positive effect on crime. Jassal (2020), Magaloni, Franco-Vivanco
and Melo (2020), and Blair, Karim and Morse (2019) show that newly formed police units with a particular
composition can affect crime rates. Finally, Dynes and Holbein (2020) demonstrate that the partisanship of
a government has only a limited effect on crime outcomes.
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changes measurement error relative to the control. When it decreases measurement error,

the observed effect overestimates the true effect because it captures a decrease in under-

reporting, hence more reported crime. When it increases measurement error, the observed

effect underestimates the true effect because it captures an increase in under-reporting, i.e.,

less reported crime.

Our framework also has two broader implications. First, administrative data may not

always be of higher quality compared with data derived from media reports. Scholars are

well aware that media reports of crime or violence (or other kinds of illicit behavior) are

often argued to be skewed by selection effects; for example, more successful illicit behavior

is less likely to be reported. Administrative data are often thought to be a remedy to this

problem (Berman, Shapiro and Felter 2011; Horz and Marbach 2022; Shaver et al. 2022;

Weidmann 2016). However, our analysis shows that the strategic incentives by reputation-

seeking agents may make administrative data problematic proxies of reality as well. The

key insight is that internal politicking, careerism, and signaling can lead to strategically

misreported statistics even when members of the agency do not expect the data to be

released to the wider public. Although our approach is theoretical, this finding is also

echoed in Garbiras-Dı́az and Slough (2022) who empirically document the misreporting of

Colombian bureaucrats using a novel audit study.

Second, we show that a special, especially pernicious case studied by the methodologi-

cal literature on measurement bias—misclassification that is not conditionally random—is

the generic case for law enforcement data. In this context, conditional randomness means

that a treatment does not influence the probability with which the variable is misclassi-

fied (Bound, Brown and Mathiowetz 2001; Hausman, Abrevaya and Scott-Morton 1998;

Meyer and Mittag 2017; Weidmann 2016). In our model, this probability corresponds to

an “interim” notion of measurement error—it is the equilibrium probability that the agents

misreports conditional on an enforcement outcome. Because the agent optimally conditions

their misreporting decision on expected effort and expected crime, if a treatment has an

causal effect on the true crime statistic, then it must have an effect on the equilibrium mis-

classification probability, and hence directly influence the observed crime statistic. Thus,

generically, conditional randomness cannot hold for data created by enforcement agencies.

These results contribute to several literatures. First, there is a relatively recent theoret-

ical literature concerned with police learning. McCall (2019) and Hübert and Little (2023)

examine models of policy experimentation within police agencies and show how inferences

and accompanying decisions affect policing disparities across demographic groups. The for-

mer contribution focuses on how different police tactics encourage or discourage help from

residents while the latter contribution focuses on imperfect learning—some police officers

may not accurately condition on relevant variables. By contrast, we focus on the ability of

social scientists and third-parties to learn from potentially misreported policing data and
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how police officers or agencies are affected by their own, anticipated (mis-)reporting.

Second, there is a theoretical literature on endogenous data quality and collection outside

of the crime context. Gibilisco and Steinberg (2022) study collateral damage data quality

in conflict settings and compare measurement error in government and NGO reports. In

contrast to our paper, the costs of misreporting are endogenized through a potential audit,

but the outcome that can be misreported is an exogenous state of the world. Alonso and

Câmara (2023) study how organizations’ data governance policies (i.e., data tampering

prevention and detection) incentivize agents to produce more or less useful data. In their

model, an agent designs an experiment and subsequently reports an outcome to a principal

who has to decide whether or not to adopt a project advocated by the agent. They identify

a tradeoff between informative experiments and truthful reporting. By contrast, we do

not study how principals optimally design rules to gather useful data. Rather, our data

is endogenously generated by the agent’s effort choice and a citizen’s choice to engage in

illicit activity. Moreover, we focus on the quality of crime data as a function of background

factors (e.g., the agent’s costs to engage in data manipulation and the citizen’s level of

economic opportunity) and the associated inferences that can be drawn from misreported

data. Because the agent’s effort choice is an intrinsic outcome of interest—it prevents

crime—our paper is also related to Roger (2013) who studies the classic moral hazard

model in which an agent can misreport an outcome. Roger (2013) then examines the

implications for optimal contracting by the principal. Finally, similar to us, Patty and Penn

(2015) are interested in understanding data quality and measurement from a formal theory

perspective. However, they employ an axiomatic approach, linking empirical measures with

certain properties.5

Third, there is an empirical literature that focuses on enforcement agency behavior.

A small set directly tackles strategic misreporting: Luh (2022) exploits a change in data

reporting practices in Texas to study racial bias through systematically misreported trooper

reports. Eckhouse (2022) focuses on rape and how performance management may have

contributed to police officers reclassifying instances of rape as “unfounded.” Cook and

Fortunato (2022) examine how state legislative capacity enhances the transparency and

quality of statistics reported by local police agencies. Relatedly, Arora (2023) shows that

juvenile crime is under-recorded relative to adult crime. Another set of papers looks for

evidence of racial profile by examining policing tactics and enforcement outcomes data with

a close connection to theoretic models of policing (Antonovics and Knight 2009; Anwar

and Fang 2006; Clark et al. 2020; Knowles, Persico and Todd 2001; Stashko 2022). Our

model builds on these contributions in designing the enforcement stage but enriches them by

5More broadly, a recent line of work studies empirical research designs through theoretical models (Bueno
De Mesquita and Tyson 2020; Slough 2023; Slough and Tyson 2022). Similar to these papers, we identify
a friction in causal inference. Different from these papers, we focus on strategic misreporting as a distinct
challenge for accurate measurement and causal inference.
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explicitly introducing a reporting stage. Finally, although their focus is on the relationship

between policing and crime, Ba et al. (2021) combine a matching model and crime data to

quantify the effects of police assignment mechanisms to local neighbors on crime rates.

2 Model

There are two players: an agent A, and a potential target T . To aid our presentation, we

use “he” to refer to T and “she” to refer to A. The game has three pieces: first, the agent

and target interact in an enforcement game; second, the enforcement game produces a law

enforcement outcome; third, the agent chooses how to record the statistic. We discuss each

in turn.

For the enforcement game, the agent chooses effort e ∈ {0, 1}, where e = 1 means high

effort and e = 0 means low effort. The potential target chooses c ∈ {0, 1}, where c = 1

means engaging in illicit behavior and c = 0 means not engaging in illicit behavior. An

outcome of the enforcement game is a pair (e, c). The agent and target have preferences

over these outcomes. We write the target’s payoffs as

uenT = c(1− e)− γc.

Thus, the target receives normalized benefit of 1 for illicit activity when there is low en-

forcement effort. The parameter γ represents the (opportunity) costs of illicit activity and

is private information to the target. In particular, it is drawn from an absolutely continuous

random variable with convex support, cumulative distribution function (CDF) G, and an

associated probability density function (PDF) g. We assume that g is continuous on its

support, ensuring that derivatives of implicitly defined quantities are continuous.

For the agent’s payoffs, we write

uenA = βec− ρe.

Here, β > 0 is the intrinsic benefit of exerting high effort with illicit activity, e.g., motivations

to catch the target engaging in the act. This specification is isomorphic to −β(1 − e)c

replacing βec, in which case β represents the cost of letting criminal activity happen under

the agent’s watch when she exerts low effort. The agent’s relative cost of high effort is ρ

and is private information. It is drawn from an absolutely continuous random variable with

convex support, CDF F , and PDF f , where f is continuous over its support.

The timing for the enforcement game is as follows. First, the private costs ρ and γ are

realized for A and T , respectively. Subsequently, the players choose their actions simulta-

neously.

The enforcement interaction is standard (e.g., Clark et al. 2020; Knowles, Persico and
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Todd 2001; Luh 2022; Stashko 2022).6 Previous contributions usually abstract away from

explicitly discussing how this interaction maps into law enforcement statistics, however.

Given that data manipulation is our focus, we now make assumptions on how outcomes

of the enforcement interaction map onto (reported) law enforcement statistics. We think

of the law enforcement statistic a partial summary of the outcomes of the enforcement in-

teraction. What they summarize depends on the interpretation of enforcement effort, the

interpretation of illicit activity, the possibility of third-party reporting , and the dimension-

ality of the law enforcement statistic. Of course, the law enforcement statistic may not be

sole outcome that the agent and target care about.

Specifically, let x(e, c) ∈ {0, 1} denote the true law enforcement outcome. We call x = 1

the crime outcome (or law violation) and x = 0 no crime outcome (no violation of the law).

We mainly consider the following idealized specification for the data generating process:

x = (1− e)c.

This specification reflects a focus on preventative enforcement effort, which decreases the

opportunities for criminal behavior. In other words, the outcome of enforcement interaction

consists of the opportunities for crime. The agent’s choice of effort, e = 1, shrinks opportu-

nities (e.g., patrolling) while planning behavior by the target, c = 1, expands opportunities

(e.g., arming). We assume that opportunities for crime exists if and only if (1− e)c = 1.

The specification encapsulates several assumptions. First, the target uses any opportu-

nities for crime, so crime occurs if and only if (1 − e)c = 1. The agent will learn of crime

passively. Moreover, planning c = 1 is not detectable or not a major crime. For example,

the target is a gang deciding whether or not to engage in a turf war. If the police patrol,

then the target may see this patrol, and subsequently, the target may simply run away. In

turn, the outcome x = 1 represents gang violence, which is only possible if the target arms

and the agent does not patrol. Here, β is relative cost of letting crime occur on agent’s

watch, and γ is the opportunity cost of arming for turf war. Naturally, the crime statistic

outcome x = 1 implies that no effort was exerted, e = 0.

After the enforcement stage, the agent observes the outcome x and her data manipu-

lation costs, which are denoted by η. The agent writes a report x̃ ∈ {0, 1}. We interpret

x̃ = x as a truthful report and x̃ ̸= x as a lie, which refer to misclassifying a statistic or

misreporting a statistic. Consistent with the definition of the true law enforcement statistic

x, we call x̃ = 1 reported crime and x̃ = 0 reported no crime.

We now discuss the total payoffs for the agent, which are the sum of payoffs from the

6Similar interactions appear in the terrorism and counterterrorism literature (e.g., Di Lonardo and Dragu
2021; Dragu 2011)
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enforcement and reporting stages:

uA = uenA + ureA = βec− ρe︸ ︷︷ ︸
enforcement payoff

+ bx̃ − ηI[x̃ ̸= x]︸ ︷︷ ︸
reporting payoff

.

Here, bx̃ ≡ Pr(e = 1 | x̃) is the endogenous posterior belief of high enforcement effort given a

report x̃. Thus, our agent wants to convince a third party that it exerted high enforcement

effort. Such a third party could be a funding source like the mayor or a city council, a

manager higher up in the chain of command like the chief of police, or the citizenry at large

where the agent has an easier job when citizens believe she is working hard. The agent’s

cost of data manipulation is η. It is a random variable drawn from a CDF H with PDF h.

As above, H has convex support, and h is continuous over that support. We also assume

that η is bounded below by 0 so min supp(H) = η ≥ 0. Finally, the parameter η is realized

only after enforcement game.

To summarize, the full sequence of the model is the following.

1. A observes the cost of effort ρ ∼ F , and T observes the opportunity cost γ ∼ G.

2. Simultaneously, A chooses effort e and T chooses behavior c.

3. Enforcement payoffs are realized, ueni for i = T,A.

4. The law enforcement statistic is produced according to x = (1− e)c.

5. A observes the realization of the statistic x and cost of manipulating data η ∼ H.

6. A writes a report x̃ ∈ {0, 1}.
7. A receives reporting payoffs ureA = bx̃ − ηI[x̃ ̸= x].

2.1 Definition of equilibrium and quantities of interest

For the target, a strategy is a function sT : supp(G) → {0, 1}, and sT (γ) = 1 is the decision

to engage in illicit activity given costs γ. For the agent, a strategy is a tuple sA = (senA , s
re
A ),

where senA : supp(F ) → {0, 1} and sreA : {0, 1}× supp(H) → {0, 1}. Here, senA (ρ) is the effort

decision given cost ρ, and sreA (x, η) is the report given the true law enforcement statistic

x ∈ {0, 1} and manipulation costs η.7 Recall beliefs are bx̃ = Pr(e = 1 | x̃) for reports

x̃ ∈ {0, 1}. We focus on perfect Bayesian equilibria referred to as equilibria hereafter.

Specifically, an equilibrium is an assessment (s, b) where (i) s = (sT , sA) is a sequentially

rational strategy profile given beliefs b = (b0, b1) and (ii) beliefs b are consistent with the

strategies and updated via Bayes’ rule whenever possible.

It is often useful to work with the following higher-order choice probabilities. Given

7Note that the agent’s reporting strategy sreA does not depend on e, which is without loss of generality
as A’s reporting payoffs do not depend on e.
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strategy profile s, define the following:

Cs = Pr(c = 1 | s) =
∫

I[sT (γ) = 1]g(γ)dγ,

Es = Pr(e = 1 | s) =
∫

I[senA (ρ) = 1]f(ρ)dρ, and

Rs
x = Pr(x̃ ̸= x | x, s) =

∫
I[sreA (x, η) ̸= x]h(η)dη.

In words, Cs is probability of illicit activity given strategy profile s, Es the probability of

high effort, and Rs
x the probability of misreporting outcome x.

Besides examining the forces that shape equilibrium behavior, we are interested in two

quantities that, in equilibrium, are influenced by the players’ behavior and that play im-

portant roles in empirical analyses. Our first definition is about measurement error. Recall

that for a discrete random variable, measurement error is misclassification. Therefore, we

define measurement error as follows.

Definition 1. Given a strategy profile s, measurement error M s is defined as the ex-ante

probability of misclassification:

M s ≡ Pr(x ̸= x̃ | s).

.

We interpretM s as a summary measure of data quality. As Definition 1 emphasizes, it is

computed without knowing true or reported crime.8 Hence, it can also be thought as average

data quality because M s = Pr(x = 1|s)Rs
1 + Pr(x = 0|s)Rs

0. We are interested in how the

quantity M s responds to changes in parameters. In particular, we will investigate whether

ex-ante misclassification decreases if it becomes more costly to the agent to manipulate

data.

Another quantity of interest is the difference between the probabilities of actual and

recorded crime, formally defined in the next definition.

Definition 2. Given a strategy profile s, the difference in the probability of a crime and

the probability of a reported crime is

Ds ≡ Pr(x = 1|s)− Pr(x̃ = 1 | s).

For brevity, we sometimes refer to Ds as difference in crime probabilities or difference

in crime coverage. The quantity is important because it can be intuitively linked to over-

and under-reporting. In particular, if Ds < 0, then crime is over-reported; if Ds > 0, then

8After the game has concluded, and the random variables x and x̃ are realized, there is (ex-post)
misclassification if x ̸= x̃. After the enforcement stage, after x is realized, (interim) misclassification occurs
with probability Pr(x ̸= x̃ | x) denoted by Rs

x with strategy profile s. We return to the connection between
interim and ex-ante misclassification below.
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it is under-reported. Furthermore, given that most descriptive and inferential statistics use

means, the difference in actual and reported crime is of particular substantive importance.9

While Definitions 1 and 2 appear different, we subsequently show that the quantities are

closely linked in equilibrium, i.e., up to their sign, they are identical. Thus, insights for one

are directly relevant to the other.

In Section 4.3, we use the model to study to what extent causal effect of parameters

may differ for actual and observed crime. We defer our definition of causal effects until we

have characterized the equilibrium, however.10

2.2 Discussion of assumptions

We make several simplifying assumptions. First, in order to incorporate both an enforce-

ment and a reporting stage, both stages are deliberately stylized. In particular, the enforce-

ment stage features a single choice by the agent and the target, even though in reality it

consists of a sequence of choices. For example, in Knox, Lowe and Mummolo (2020) and

Clark et al. (2020), the police officer can both stop a target and, conditional on stopping,

choose a certain tactic. Moreover, the utility functions of the agent and target are deliber-

ately sparse (with as few parameters as possible) so that the target’s benefit of a successful

crime is normalized to 1 and there is no separate parameter for being caught and punished,

although such a parameter is easily accommodated. Finally, the agent intrinsically cares

about fighting criminal behavior with a parameter β. This assumption has empirical sup-

port (Stashko 2022), but it would be isomorphic if the agent cares about crime occurring

on her watch.

In addition, the baseline model assumes that enforcement effort suppresses the crime

statistic x. This means we are primarily studying preventative enforcement. Below, we also

briefly consider a version of the model with remedial enforcement, i.e., x = ec.11 Here, the

outcome of enforcement interaction is the uncovering criminal behavior. The agent’s choice

of effort, e = 1, is searching for a crime (stopping) while the target’s choice, c = 1, is the

execution of a crime (speeding). We show that whether crime is under- or over-reported in

our framework depends on the nature of enforcement effort—see Proposition 5 below.

Relatedly, in our crime production technology, the agent can powerfully affect crime:

enforcement effort renders crime impossible. Although this may be plausible for well-staffed,

well-resourced police agencies and for some types of crime, the assumption may be too strong

for other applications. In Appendix D, we generalize the crime production technology

9Definition 1 may be more substantively appealing quantity for measurement error, however, because it
generalizes to variables that have more than two values.

10Briefly, we define causal effects of a parameter θ on outcomes x and x̃ in terms of comparative statics.
Hence, in contrast to Definition 1 and 2, the definition relies on an equilibrium characterization, and not
just on a strategy profile.

11By using the terminology preventative and remedial enforcement, we are borrowing the terminology in
Dragu and Przeworski (2019).
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to allow for less than perfect crime preventation after high effort, assuming that Pr(x =

1|e, c) = α(1−e)c+(1−α)c. Here, the strength of crime prevention is parametrized by α ∈
[0, 1]. Intuition may suggest that for the kinds of crimes in which α is smaller, misreporting

is less of an issue because crime outcomes contain less information about the agent’s effort.

As a result, data quality should be higher and measurement error should be lower. In

Appendix D, we characterize the equilibria in this more general model and show that this

intuition is not always correct. Indeed, we demonstrate that for some parameter values,

decreasing α (making crime less informative about agent effort) can increase measurement

error.12 The intuition is that a lower level of α discourages the agent from exerting effort,

which makes the crime outcome x = 1 more likely. As discussed below, measurement error

increases as the probability of crime increases, all else equal.

Especially important is our choice of how to model signaling concerns in the agent’s

utility function. The agent is assumed to care about the perception of effort given the

reported crime statistic x̃. On the one hand, this is consistent with previous work that

directly embeds beliefs into an agent’s utility function to capture signaling or reputational

concerns (as in Fox and Van Weelden 2012; Kartik and Van Weelden 2019). These concerns

might be critical to a retention, financing, or public support decision by a principal. For

example, police agencies may want to convince mayors, city councils, state legislators, police

chiefs, or citizens that they worked hard to lower crime. On the other hand, this is a

departure from standard moral hazard models where the signaling or reputational concerns

are related to a type, e.g., competence or alignment of policy interests.13

To aid in interpretation, we show that our baseline model is a close approximation to

the case in which agents have a type, and they internalize the posterior probability of being

a “diligent” rather than “lazy” type—see Appendix C.14 This information structure is more

complicated, however, because it involves an additional round of updating, leading to more

complicated posterior beliefs.15 In order to focus on the potential misreporting of crime

statistics given endogenous behavior in an enforcement encounter, we focus on the simpler

case in which the agent is assumed to directly care about perceived effort, treating the case

where there are agent types as a robustness exercise.16

12In the limit α = 0, there is no misreporting and measurement error is zero.
13See Fearon (1999) who shows that in accountability models, when the voter cares about effort provided

by the incumbent, voter-optimal equilibria break down when there is small heterogeneity across politicians.
14The key assumptions are that (i) the lazy type has effort costs ρ = ∞ whereas the diligent type has costs

ρ drawn from F , and (ii) that both types (diligent and lazy) face the same distribution of data manipulation
costs. Appendix C contains the details.

15Given that effort is still unobserved, they still must form beliefs about the effort choice, and use it to
form a posterior about the agent being the good type.

16Another possible setup is that the agent has private information about the “severity” of the crime
problem, i.e., to what extent reducing crime is a difficult task, and is tempted to over-report crime to signal
that the situation is dire to obtain additional funding. This can be accommodated by our framework if we
were to assume that the agent internalizes third-party beliefs about the severity of a problem. Similar to
the current setup, here, misreporting and effort will be intertwined and a model is needed to study how
misreporting affects inference. To begin studying this issue, we focus on the more tractable incentives to
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Finally, recall that η is the cost of data manipulation. The cost is not an inherent

feature of the agent but rather situational to the enforcement outcome. More specifically,

the exact manipulation costs are only known after the enforcement stage. They depend on

unmodeled details of the case.17 For example, burglaries are generally not violent crimes

but they would be if they involve an occupied residence and a weapon (i.e., the difference

between burglary and attempted robbery). Thus, a criminal incident might be classified as

violent depending on whether or not a weapon is involved, but the presence of a weapon

might be easier or harder to misclassify depending on specific conditions. If the weapon is a

firearm for example, then police may have a harder time reporting no weapon was present

when the firearm was discharge than when it was not. Finally, one can also interpret η as

an outcome of a future audit. To see this, suppose that the punishment for a false report

is constant ω > 0, and q that is the probability of getting caught in a lie, with q being

a random variable drawn from distribution with support on [0, 1]. Then define η ≡ qω,

where q depends on facts of the case. With this interpretation, a key assumption is that the

audit happens only after the benefit from the third-party’s belief is realized. For example,

good performance might be rewarded with more overtime or better choice of scheduling or

vehicles.

3 Equilibrium Characterization

We focus on a particular class of equilibria, what we call full-support equilibria.

Definition 3. An equilibrium (s, b) has full support if Es ∈ (0, 1), Cs > 0, Rs
0 = 0 and

Rs
1 ∈ (0, 1).

In words, Definition 3 says that a full-support equilibrium (s, b) will entail uncertainty

about whether or not the agent exerts high effort and whether or not the true law en-

forcement statistic is a crime outcome (because 0 < (1 − Es)Cs < 1). Furthermore, in a

full-support equilibrium, the law enforcement statistic is truthfully reported after the no-

crime outcome (x = 0), but will be reclassified with some probability strictly between zero

and one after the crime outcome (x = 1).

Our focus on full-support equilibria is motivated by the fact that it is likely that both law

enforcement outcomes are reported in the data, i.e., the data generating process produces

no-crime (x̃ = 0) and crime (x̃ = 1) reports with positive probability. In this case, the next

result says that the equilibrium satisfies certain properties. Appendix A contains the proof.

Lemma 1. If (s, b) is an equilibrium such that both reports are sent, i.e., Pr(x̃ = 1 | s) ∈
(0, 1), then the following hold:

signal high effort.
17Below, we explicitly analyze the consequences of situational characteristics such as body cameras in

our treatment of changes to data manipulation costs.
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1. the no-crime outcome is never misreported, and the crime outcome is not always

misreported (i.e., Rs
0 = 0 and Rs

1 < 1);

2. illicit activity can occur (i.e., Cs > 0); and

3. the agent is guaranteed not to always exert effort (i.e., Es < 1).

An implication of Lemma 1 is that if both reports are sent in equilibrium, the only poten-

tial for misreporting results from the enforcement outcome, x = 1. Furthermore, comparing

Lemma 1 and Definition 3 shows that focusing on equilibria in which both reports are sent

produces most of the substantive properties of full-support equilibria, except for two con-

ditions. First, a positive probability of effort, Es > 0, guarantees posterior beliefs bx̃ are

not trivial. Second, a positive probability of misreporting after a crime outcome, Rs
1 > 0,

guarantees misreporting occurs with positive probability. These two additional properties

are empirically plausible as well: at least some of the time, law enforcement officers ex-

ert effort and, given widespread concerns about the validity of law enforcement statistics,

may manipulate their reports. Finally, we provide sufficient conditions that guarantee all

equilibria have full support in Proposition B.1 in Appendix B.18

To characterize full-support equilibria, recall that we focus on preventative policing

where x = (1 − e)c. Consider the posterior beliefs after each report, bx̃. When Rs
0 = 0, a

reported crime, x̃ = 1 implies that there indeed was a crime, x = 1, which also implies no

effort, e = 0. Hence, Pr(e = 1|x̃ = 1, s) = b1 = 0.

After observing x̃ = 0, i.e., reported no crime, the agent may have misreported the crime

statistic, so that the posterior probability of the agent having exerted effort is:

Pr(e = 1|x̃ = 0, s) = b0 =
Pr(x̃ = 0|e = 1, s) Pr(e = 1|s)

Pr(x̃ = 0|s)

=
Es

Es + (1− Es)[(1− Cs) + CsRs
1]
.

To understand this expression, note that the posterior can be written in terms of prior

beliefs and the informativeness of the report x̃. Hence, if Es > 0, we can rewrite b0 as

b0 =

(
1 +

1− Es

Es

1− Cs + CsRs
1

1

)−1

.

The term 1−Es

Es is the prior ratio and
1−Cs+CsRs

1
1 is the likelihood ratio. The latter is equal

to Pr(x̃=0|e=0,s)
Pr(x̃=0|e=1,s) , i.e., how likely the signal x̃ = 0 is if the agent exerted effort (denominator)

or not (numerator).

It is now straightforward to derive the agent’s equilibrium reporting strategy. Given

that x = 1 and realized misreporting cost η, her net-of-enforcement payoff is b1 = 0 after

18The conditions are standard. They hold, e.g., if F and G have full support over the real line and H is
the uniform over [0, η̄] with η̄ ≥ 1.
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reporting truthfully but b0 − η after misreporting. Thus, a threshold strategy is optimal:

the agent lies after x = 1 if and only if η < b0− b1. Define the difference in posterior beliefs

as the manipulation stakes:

µ̄(Es, Cs, R1) ≡ b0 − b1.

Note that µ̄ increases in Es and Cs, but decreases in Rs
1. The equilibrium threshold for

manipulation, η̂∗, solves the following condition:

µ̄ (Es, Cs, H(η̂)) = η̂. (1)

Hence, the equilibrium misreporting rate is Rs
1 = H(η̂∗). Note that the agent does not

condition on effort, which is irrelevant in the reporting stage, but beliefs about effort enter

her strategy implicitly. The reason is that in order to form accurate beliefs, any third-party

observer takes into account their prior belief about effort Es and illicit behavior Cs. In

particular, more expected effort or criminal behavior makes x̃ = 0 more credible, increasing

the agent’s misreporting incentives.

Lemma 2. The agent manipulates more if more effort or illicit activity is expected:

∂η̂∗

∂Es
= −

∂µ̄
∂Es

∂µ̄
∂Rs

1
h(η̂∗)− 1

> 0 and
∂η̂∗

∂Cs
= −

∂µ̄
∂Cs

∂µ̄
∂Rs

1
h(η̂∗)− 1

> 0.

Now consider the enforcement game. Given a realized opportunity cost γ, the target’s

expected utility for engaging in illicit behavior is 1 − Es − γ. By contrast, the expected

utility of not engaging in illicit behavior is 0. Hence, he chooses to engage in illicit behavior

if and only if γ < γ̂∗ where

γ̂∗ = 1− Es. (2)

Thus, Cs = G(γ̂∗). Note that the target’s best response is decreasing in Es: the more likely

the agent exerts effort, the more likely illicit activity is unsuccessful, and hence the lower

the incentives are to commit it.

For the agent, if she exerts effort, then at the enforcement stage, she catches illicit

activity in the act with probability Cs, obtaining β. In addition, the agent has to pay the

costs of effort, ρ. Moreover, because there will be no crime (x = 0) and the agent correctly

reports this (x̃ = 0), the agent obtains a payoff of b0 at the reporting stage. Thus, the

expected payoff of exerting effort is

βCs − ρ︸ ︷︷ ︸
enforcement

payoff

+ b0︸︷︷︸
reporting

payoff

.

However, if the agent shirks, the enforcement payoff is 0. For the reporting stage, with
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with probability 1 − Cs, there will be no actual crime, x = 0. Since the agent accurately

reports x̃ = 0, the agent’s reporting payoff is again b0. However, with probability Cs(1−Rs
1),

there is a crime but the agent’s data manipulation costs are relatively high, so that no

misreporting takes place. The agent’s payoff in this case is b1 = 0. With probability

CsRs
1, there is an actual crime but the data manipulation costs are small, and so the agent

misreports. The agent’s payoff is b0−E [η|η ≤ η̂∗]. Thus, the expected payoff for not exerting

effort is:

(1− Cs)b0 + Cs [(1−Rs
1)0 +Rs

1 (b0 − E [η|η ≤ η̂∗])] .

Comparing these two expressions, the agent works if and only if

ρ < Cs(β +Ψ(Es, Cs)),

where

Ψ(Es, Cs) = (1−Rs
1)µ̄(E

s, Cs, Rs
1)︸ ︷︷ ︸

relative reward incentive

+Rs
1E[η|η ≤ µ̄(Es, Cs, Rs

1)]︸ ︷︷ ︸
expected manipulation costs

= (1−H(η̂∗))η̂∗ +

∫ η̂∗

η
ηh(η)dη.

In words, Ψ captures the agent’s dynamic incentives to work, and these incentives are strictly

increasing in the manipulation stakes, which in equilibrium are equal to the threshold η̂∗.

As such, Lemma 2 implies that Ψ is increasing in expected effort Es and expected illicit

activity Cs.

Thus the agent use a threshold strategy such that Es = F (ρ̂). In addition, target’s

best response to ρ̂ is Cs = G(1 − F (p̂)). Plugging this into the preceding expressions, an

equilibrium (s, b) is characterized by a threshold strategy, ρ̂∗, that solves

G(1− F (ρ̂))[β +Ψ(F (ρ̂), G(1− F (ρ̂)))]︸ ︷︷ ︸
≡Λ(ρ̂)

= ρ̂. (3)

Proposition 1 summarizes the analysis thus far.

Proposition 1. If (s, b) is a full-support equilibrium, then the following hold:

1. The agent exerts effort if and only if ρ < ρ̂∗ where ρ∗ solves Equation 3, so Es = F (ρ̂∗).

2. The target engages in illicit behavior if and only if γ < γ̂∗ where γ̂∗ solves Equation

2, so Cs = G(γ̂∗).

3. In the reporting subgame, the agent never misreports the no-crime outcome x = 0,

but misreports after the crime outcome x = 1 if and only if η < η̂∗, where η̂∗ solves

Equation 1. So Rs
1 = H(η̂∗).
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To better understand equilibrium incentives, consider the relationship between enforce-

ment and reporting as encapsulated by the term Ψ. It is clear that the agent’s reporting

strategy affects these dynamic incentives: if the equilibrium threshold for manipulation (η̂∗)

increases, Ψ increases as well, i.e., ∂Ψ
∂η̂∗ > 0. The above analysis implies that effort increases.

The agent’s equilibrium effort also affects reporting through beliefs µ̄. When more effort

is expected, i.e., the equilibrium threshold ρ̂∗ increases, two effects emerge. First, there is a

partial effect given by ∂η̂∗

∂ρ̂∗ = ∂η̂∗

∂Es f(ρ̂∗) > 0. Substantively, as reports of no crime are more

credible, the agent is convinced to lie more often. Second, there is a total effect:

dη̂∗

dρ̂∗
=

f(ρ̂∗)

1− ∂µ
∂Rs

1
h(η̂∗)

(
∂µ

∂Es
− ∂µ

∂Cs
g(1− F (ρ̂∗))

)
︸ ︷︷ ︸

Total, weighted effect on stakes

,

which accounts for, via the target’s best response, the fact that higher effort decreases

criminal activity. This total effect, weighted by the responsiveness of the target to higher

effort, can be positive or negative, depending on parameter values. We show below that the

sign of this term is crucial for equilibrium uniqueness and comparative statics.

3.1 Examining full-support equilibria

Complements or substitutes? It is useful to recast our analysis in terms of whether

effort and lying are complements or substitutes. To do so, recall that the agent has two

instruments at her disposal: providing high effort and manipulating data. If the agent

provides effort in a full-support equilibrium, then the agent will not lie. The contrapositive

is if the agent manipulated data, then the agent provided low effort. Thus, when looking

at realized actions, the agent’s instruments are substitutes. However, now consider the

incentives to manipulate and the incentives to exert effort. The former is increasing in

expected effort ( ∂µ̄
∂Es > 0) and the latter is increasing in expected manipulation (because

∂Ψ
∂η̂ > 0). Thus, when looking at expected equilibrium rates, the agent’s instruments are

complements.

Uniform manipulation costs While Lemma 2 implies that manipulation is increasing in

effort and illicit activity , the precise relationship between these quantities can nevertheless

be complex. To see this, consider the case in which the data manipulation costs are drawn

uniformly over [0, 1]. Because R1 = H(η̂) = η̂, Equation 1 simplifies to

Es

Es + (1− Es) [1− Cs + Csη̂]
= η̂.
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Hence, the equilibrium threshold can be explicitly computed as

η̂∗ =
− [1− Cs(1− Es)] +

√
[Es + (1− Es)(1− Cs)]2 + 4Es(1− Es)Cs

2(1− Es)Cs
.

Besides the explicit solution for the equilibrium manipulation threshold η̂∗, uniform

manipulation costs also simplify the expression of Ψ. Because H(η̂) = η̂ and
∫ η̂
0 ηdη = η̂2

2 ,

we can write Ψ as a function of the manipulation threshold:

Ψ(η̂) = (1− η̂)η̂ +
η̂2

2
= η̂ − η̂2

2
,

which is increasing in η̂. Although Ψ is a relatively simple function of the manipulation

threshold η̂, it is a complicated function of Es and Cs, because, even with uniform manip-

ulation costs, the equilibrium manipulation threshold is a complicated function of both.

Equilibrium multiplicity Multiple solutions to Equation 3 can exist, so the model may

admit multiple equilibria. This is perhaps surprising because if reporting were guaranteed

to be truthful, i.e., x̃ = x, then there would be a unique equilibrium in the enforcement game

as in standard inspection games. Likewise, if behavior in the enforcement game were treated

as exogenous, i.e., Es and Cs are fixed constants, then there would a unique equilibrium

in the reporting stage. When enforcement and reporting are endogenously determined,

multiplicity can arise, however.

To see the intuition for this, consider the left panel in Figure 1. The horizontal axis

represents possible values for the agent’s enforcement threshold strategy, and the vertical

axis graphs Λ(ρ̂) from Equation 3. In this example, the agent’s intrinsic incentives for

enforcement effort are small as β = 0.1. Thus, the agent’s incentives for providing effort

are largely dynamic and given by CsΨ. Recall that the difference in posterior beliefs µ̄

describes the manipulation stakes, where larger stakes lead to larger dynamic incentives for

effort, Ψ. Both terms are increasing in expected equilibrium effort Es. If Es is large, there

are large stakes in the reporting game and large incentives for effort, but if Es is small,

there are small stakes and little incentives for effort.

Thus, expectations about enforcement effort can be self-fulfilling. When the third party

believes the agent is likely to exert effort, there are large dynamic incentives to work. When

the third party believes the agency is unlikely to exert effort, there are small dynamic in-

centives to work. This creates the multiple equilibrium in Figure 1’s left panel. Technically,

this multiplicity does not appear is traditional inspection games, which are the standard

way to model deterrence in policing. Thus, the substantive features of equilibrium play in

crime models can depend on the ability of police agents to misreport outcomes.

Substantively, multiple equilibria imply that several combinations of different report-
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Figure 1: Examples of equilibrium multiplicity and uniqueness.

Multiple Equilibria Unique Equilibrum 1 Unique Equilibrum 2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

 

 

Agent’s effort threshold strategy, ρ̂

Λ(ρ̂)

Notes: In the left panel, β = 0.1, η ∼ N (0, 1.5), ρ ∼ N (0.5, 0.1), and γ is drawn U(0, 1e-3) with probability
0.95 and drawn U(0, 2) with probability 0.05. The middle panel has the same assumptions as the left but
ρ ∼ N (0.5, 0.5). The right has the same assumptions as the middle but η ∼ U(0, 1.1) and γ is drawn from
a density such that γ ∈ [−0.1, 0] implies g(γ) = 9.4, γ ∈ (0, 0.45] implies g(γ) = 1

45
, γ ∈ (0.45, 0.54] implies

g(γ) = 5
9
, and g(γ) = 0 for all γ /∈ [−0.1, 0.54].

ing and enforcement behaviors co-exist for the same parameter values. This means that

organizations can differ widely in terms of both the accuracy of reports as well as their en-

forcement behavior, and indeed expectations determine outcomes. Several studies point out

the importance of “culture” in law enforcement organizations. By culture, this line of work

often refers to the importance of leadership and managerial expectations for the workings

of police departments (Cordner 2017; Ingram, Terrill and Paoline 2018; Johnson 2015). Put

differently, expectations about proper behavior have a causal effect on what organizational

members are doing on the job (see also Schneider and Bose 2017). Such a mechanism is

often discussed in the study of police force, i.e., how expectations by supervisors to approve

of using coercion to stop perpetrators of crime create incentives of on the ground agents to

indeed appropriately apply force (e.g., Ingram, Terrill and Paoline 2018; Terrill, Paoline and

Manning 2003). Similarly, in this model, the existence of expectations about the quality of

police records can create the possibility of distinct behavioral patterns with respect to both

record keeping and enforcement effort.

To see when multiple equilibria may arise, differentiating Λ reveals that

−g(1− F (ρ̂))− f(ρ̂) [β +Ψ] +G(1− F (ρ̂))
dΨ

dρ̂
.

A standard sufficient condition for uniqueness is that Λ is decreasing in the threshold ρ̂. The

first expression in the preceding expression is indeed negative, representing the standard

effect that more effort decreases illicit activity, which decreases the benefits of exerting
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effort. However, the second expression can be positive or negative. Recall from the previous

subsection that the sign of total effect of expected effort on Ψ is determined by the sign of

the total, weighted effect on the manipulation stakes:

sign

(
dΨ

dρ̂

)
= sign

(
∂µ

∂Es
− ∂µ

∂Cs
g(1− F (ρ̂))

)
.

As a result, if Equation 3 admits multiple solutions, it must the be case that when the

agent considers increasing effort (marginally increasing ρ̂), the reporting stage further in-

centivizes higher effort, so that dΨ
dρ̂ is positive. As demonstrated, this can only be the case

if (marginally) higher expected effort increases the manipulation stakes, µ̄. Thus, expected

effort increasing the incentives to manipulate data is a necessary condition for equilibrium

multiplicity.

Proposition 2. Suppose there are multiple equilibria. Then, for some effort thresholds ρ̂,

an increase in expected effort increases the stakes of the reporting stage:

∂µ̄

∂Es
− g(1− F (ρ̂))

∂µ̄

∂Cs
> 0.

In Appendix F, we detail two sufficient conditions for uniqueness. The first follows a

standard approach—e.g., Baliga and Sjostrom (2009)—by ensuring that there is enough

uncertainty over the private information in the enforcement game. For example, consider

Figure 1’s middle panel. Here, effort costs are drawn from a Normal distribution with

standard deviation 0.5, which has more uncertainty than the left panel where the standard

deviation parameter is 0.1. In this case Λ will be increasing in ρ̂ with a sufficiently shallow

slope. The second ensures that Λ is strictly decreasing in ρ̂ over an appropriate interval,

thereby ensuring that the right-hand and left-hand sides of Equation 3 are strictly decreasing

and increasing in ρ̂, respectively. This condition is illustrated in Figure 1’s right panel.

4 Empirical Implications

4.1 Data manipulation costs and measurement error

We now examine our key quantities of measurement error and difference in crime coverage.

In equilibrium, they are intimately linked. In fact, in this version of the model, they are

the same.

Remark 1. In a full-support equilibrium, Ds =M s.

As a result, our insights apply to both quantities. Intuitively, Remark 1 follows from

two reasons. First, we employ binary variables which are both characterized by a single

quantity: the probability of success. Second, because the agent wishes to signal high effort,
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she never misreports after the no crime outcome, i.e., Rs
0 = 0. This is important because

M s is increasing in Rs
0 (average misclassification is increasing in misclassification after each

outcome) while Ds is decreasing in Rs
0 (the probability of a reported crime outcome is

increasing in Rs
0, which enters Ds negatively). Since Rs

0 = 0, these differences in the

computation of M s and Ds do not matter, and they are equal to each other.

By Definition 2, crime is under-reported in equilibrium:

Ds = Pr(x = 1|s)− Pr(x̃ = 1|s)

= (1− Es)Cs[Es]︸ ︷︷ ︸
Pr(x=1|s)

Rs
1[E

s, Cs]︸ ︷︷ ︸
Pr(x̃ ̸=x|x=1,s)

> 0.

Moreover, note that Ds and M s are both a function of enforcement via the probability that

the agent finds herself in a situation in which she is tempted to lie, Pr(x = 1|s) = (1−Es)Cs,

and a function of the misreporting probability in this situation, Rs
1. In equilibrium, these

two quantities are linked. Nevertheless, to build intuition, it is useful to first examine

measurement error when the link between behavior and reporting is acknowledged, i.e.,

both effort Es and illicit activity Cs affect Rs
1, but the link between between the agent’s

and the target’s behavior is ignored, i.e., one can vary Es and Cs independently.

Proposition 3. Fixing agent effort (Es), increasing criminal behavior (Cs) increases mea-

surement error. Fixing criminal behavior, increasing agent effort decreases measurement

error if and only if the increase in misreporting is sufficiently small:

h(η̂∗)
∂η̂∗

∂Es
<
H(η̂∗)

1− Es
.

Proposition 3 demonstrates the complexity of the forces driving measurement error

and the difference in crime coverage. In particular, even if one was able to independently

manipulate agent effort, the implications are not clear. Intuitively, agent effort decreases

actual crime, which makes it less likely that the agent finds herself in a situation in which

she faces incentives to manipulate data. However, when the agent is indeed in this situation,

higher effort means more misreporting because the agent has more credibility. Of course, in

equilibrium, higher agent effort also decreases illicit activity, which also affects measurement

error. Hence, equilibrium effects are even more complex.

Proposition 3 also shows that if one were able to directly decrease the probability of

misreporting without affecting the agent’s effort or the target’s choice of illicit behavior,

measurement error would decrease. One idea is to increase the agent’s manipulation cost.

A variety of policies or procedures can be interpreted as increasing manipulation cost, from

oversight (Cook and Fortunato 2022) to body cameras (Yokum, Ravishankar and Coppock

2019). To incorporate this in the model, consider a parameter σ ≥ 0, and assume that
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manipulation costs are now given by Hσ(η) ≡ H (η − σ), with support
[
η + σ, η + σ

]
.19 An

increase in σ corresponds to a first-order stochastic dominance shift. We now investigate

how measurement error M s responds. To begin with, write measurement error explicitly as

a function of σ:

M s(σ) = (1− Es(σ))Cs[Es(σ)]Rs
1 [E

s(σ), Cs[Es(σ)], σ] ,

where we emphasize that σ affects Es via Ψ and Cs indirectly via Es. We have:

∂M s

∂σ
=
∂Es

∂σ
Rs

1

[
−Cs + (1− Es)

∂Cs

∂Es

]
︸ ︷︷ ︸

Effect on Lying State

+Cs


Direct Effect︷︸︸︷
∂Rs

1

∂σ
+
∂Es

∂σ

Total Effect of Effort︷ ︸︸ ︷(
∂Rs

1

∂Es
+
∂Rs

1

∂Cs

∂Cs

∂Es

)
︸ ︷︷ ︸

Effect on Reporting

.

(4)

There are several effects. To begin with, there is a direct effect: all else equal in enforcement,

it can be shown that as σ increases, the agent manipulates less:
∂Rs

1
∂σ < 0. This is the Direct

Effect in Equation 4.

Additionally, the change of manipulation costs has spillover effects for the enforcement

stage. In particular, the agent’s equilibrium enforcement effort will vary with manipula-

tion costs, i.e., ∂Es

∂σ ̸= 0. This leads to indirect effects in Equation 4. The next result

demonstrates that, under some conditions, an increase in σ increases effort.20

Proposition 4. Assume that Hσ is the Uniform distribution over
[
η + σ, η + σ

]
, some types

of targets will never choose crime (G(1) < 1), and that the agent’s effort cost are sufficiently

noisy (F (G(1)β) > 0 and F (G(0)(β + 1)) < 1). If (s, b) is a full-support equilibrium such

that ρ̂∗ is the unique solution to Equation 3 and Λ′(ρ̂∗) ̸= 1, then an increase in manipulation

costs σ:

• decreases the equilibrium probability of data manipulation, Rs
1, when Es and Cs are

held fixed,

• increases equilibrium effort Es,

• and decreases equilibrium illicit activity Cs.

To understand the consequences of Proposition 4 for measurement error, recall that the

probability of a crime outcome is Pr(x = 1 | s) = (1 − Es)Cs. Increases in manipulation

costs will increase effort and decrease the rate of criminal activity, as stated in Proposition

19This specification is from Benabou and Tirole (2011).
20The technical condition on the derivative of Λ is necessary for the equilibrium to be well-behaved or

“regular” in the game-theoretic sense, e.g., it is a necessary condition to apply the Implicit Function Theorem
to compute ∂ρ̂∗

∂σ
. It is also a generic condition in that every equilibrium threshold ρ̂∗ will satisfy the condition

for all values of β > 0 except for at most a closed, Lebesgue-measure-zero subset of (0,∞).
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Figure 2: Equilibrium quantities and data manipulation costs.
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Notes: Example with β = 0.2, ρ ∼ N (0.5, 0.1), γ ∼ N (0.5, 0.1), and η ∼ U(σ, 0.4 + σ), where σ represents
the severity of lying costs.

4. This is the indirect Effect on the Lying State in Expression 4, where an increase in σ

decreases the likelihood of being in the state of the world in which the agent lies, which

further decreases measurement error.

However, there is a final indirect effect in which the enforcement stage again affects

behavior at the reporting stage. In particular, more expected effort increases incentives to

reclassify—this is the Total Effect of Effort in Equation 4 and it can be positive or negative.

If it is positive and large in magnitude, it can overcome the other, negative effects. Hence,

an increase in σ can increase or decrease measurement error M s.

To illustrate these results, consider an example in which the agent’s motivation to stop

crime, β, is equal to 0.2, effort costs ρ are drawn from N (0.5, 0.1), opportunity cost γ are

drawn from N (0.5, 0.1), and the data manipulation costs η are drawn from U(σ, 0.4 + σ).

We vary σ ∈ [0, 0.3] to represent changes in the severity of lying costs.

Figure 2 graphs the equilibrium rates of effort, criminal activity, and misreporting at

different levels of lying costs. Notice that there is a unique equilibrium here, so larger lying

costs imply more enforcement effort and less criminal activity, illustrating Proposition 4.

Figure 3 shows how these equilibrium quantities map onto measurement error M s and

the difference in crime coverage Ds at various levels of the severity of data manipulation

costs, σ. The intuition is that essentially the second indirect effect dominates in this exam-

ple. Increasing the distribution of lying costs, incentivizes effort in the enforcement stage

which implies that criminal activity decreases and measurement error decreases. The agent

has a better reputation, which incentivizes the agent to lie in the reporting stage. Hence,

equilibrium measurement error increases. When lying costs are small the latter effect dom-
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Figure 3: Measurement error and data manipulation costs.
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Notes: Example generated using the assumptions in Figure 2, where σ captures the severity of data manip-
ulation costs. Recall that measurement error is equal to the difference in crime coverage, i.e., Ms = Ds.

inates; as they get larger, the former (and direct effect) does.

4.2 Measurement error when effort is necessary to detect crime

We briefly discuss insights from a version of the model in which effort positively affects

the crime statistic, i.e., x = ec. As discussed above, this likely captures crime statistics

like speeding tickets, where enforcement effort is required to detect crime. Focusing again

on equilibria in which both reports are sent with positive probability, we can show that

measurement error, M s, is closely connected to the difference in crime probabilities, Ds.

Here, Ds = −M s. Moreover, we can replicate the characterization of measurement error as

the product of the likelihood of the lying state and the misreporting probability:

Ds = −M s = − (1− EsCs[Es])︸ ︷︷ ︸
Pr(x=0|s)

Rs
0 [E

s, Cs]︸ ︷︷ ︸
Pr(x̃ ̸=x|x=0,s)

≤ 0.

Thus, in this version of the model, there is over-reporting of crime because the agent wishes

to signal that effort was provided, which is necessary to uncover crime.

Proposition 5. If the actual law enforcement statistic is produced by x = (1−e)c, and both

reports are sent in equilibrium, then there is under-reporting and measurement error M s

is weakly positive. If the actual law enforcement statistic is produced by x = ec, and both

reports are sent in equilibrium, then there is over-reporting and measurement error M s is

weakly negative.

Hence, the nature of enforcement effort determines the sign of the difference between
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true and reported crime probabilities: preventative enforcement creates incentives to under-

report whereas remedial enforcement creates incentives to over-report. Although the over-

reporting of crime might seem counterintuitive, one prominent example illustrates the result.

According to an external audit, Connecticut state police falsified records of tens of thousands

of traffic tickets (CT Insider 2023). The fake tickets were not actually issued, so the reports

were only internal and no money was collected. In this case, the over-reporting was only

uncovered after an initial investigation found that “four troopers had collectively entered

at least 636 fake tickets into the state police computer system over a nine-month stretch to

make it appear they were more productive than they actually were” (CT Insider 2023). The

rewards were internal involving better assignments, pay increases, promotions and specialty

vehicles. These patterns appear in our model where over-reporting should be most likely

when examining crime statistics that positively signal enforcement effort, such as ticketing

or other remedial policing.

In Appendix E, we characterize full-support equilibria with remedial policing. As in the

our characterization above, we show that equilibrium behavior in the enforcement game and

in the reporting game are jointly determined, where misreporting affects the incentives for

effort and enforcement effort determines the incentives for misreporting. Thus, our insights

are robust to a range of law enforcement activities, and hence to a range of empirical studies.

4.3 Causal effects with misreported crime

We now investigate the issue of how the frequency of crime changes as parameters change.

Definition 4. Given an equilibrium (s, b) parameterized by θ, the treatment effect of θ on

the true crime statistic is:
dPr (x = 1 | s)

dθ
.

The treatment effect of the parameter θ on the observed crime statistic is:

dPr (x̃ = 1 | s)
dθ

.

The total derivatives in Definition 4 capture the relationship between how the exogenous

parameter θ affects the equilibrium choice probabilities via the characterization in Proposi-

tion 1, thereby affecting the true and reported crime rates. We are interested in analyzing

the conditions under which these two quantities are the same, or whether analysts under-

or overestimate treatment effects.

Definition 5. Given an equilibrium (s, b), the treatment effect on the observed statistic

overestimates the treatment effect on the true statistic if

dPr (x̃ = 1 | s)
dθ

>
dPr (x = 1 | s)

dθ
.
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If the inequality is reversed, then the treatment effect on the observed statistic underestimates

the treatment effect on the true statistic.

Note that Definitions 4 and 5 consider small changes in a parameter θ. An alternative

approach would consider a discrete change in the parameter θ and compute the difference in

the probability of the true and observed crime statistic, respectively. To see this, consider

parameter values θ′ and θ′′ with associated with associated equilibrium profiles s′ and s′′,

respectively. The treatment effects on the true and observed crime statistic are:

∆s′′
s′ = Pr

(
x = 1 | s′

)
− Pr

(
x = 1 | s′′

)
and ∆̃s′′

s′ = Pr
(
x̃ = 1 | s′

)
− Pr

(
x̃ = 1 | s′′

)
.

(5)

Employing these definitions, we first show that the bias of a causal estimate, i.e., the

difference between these two quantities, is closely connected to measurement error and hence

the difference in crime coverage.

Proposition 6. When measuring the effect of parameter θ on crime, the observed effect is

equal to the true effect plus a bias term, where the bias term is the negative of the effect of

θ on measurement error, i.e.,

dPr(x̃ = 1|s)
dθ

=
dPr(x = 1|s)

dθ
+ bias, where bias = −dM

s

dθ
.

This is intuitive as the only friction between these quantities is imperfect measurement.

The result has major implications, however. If a parameter θ can increase or decrease

measurement error—such as the lying costs parameter in the previous subsection—it will

also increase or decrease the difference in treatment effects. The next Corollary illustrates

this a bit differently.

Corollary 1. The observed treatment effect can be written as an attenuated true treatment

effect and a weighted effect on the misreporting probability Rs
1:

dPr(x̃ = 1|s)
dθ

= (1−Rs
1)
dPr(x = 1 | s)

dθ
+ Pr(x = 1 | s)dR

s
1

dθ
(6)

Corollary 1 shows that the sign of
dRs

1
dθ can be used to sign the bias from strategic

misreporting:

• If dPr(x=1|s)
dθ > 0 and

dRs
1

dθ < 0, then the observed effect underestimates the true effect.

• If dPr(x=1|s)
dθ < 0 and

dRs
1

dθ > 0, then the observed effect overestimates the true effect.

Some empirical studies attempt to directly measure the misreporting probability Rs
1 (e.g.,

Luh 2022). Combined with a conjecture about the sign of the true treatment effect, an

examination of how that this variable changes with the treatment can be used to provided

a guess on how measurement error changes treatment effects.
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We illustrate the content of Proposition 6 with an application to the literature on the

effect of economic opportunity costs on crime—for a recent review of the evidence, see

Draca and Machin (2015). To investigate this questions, researchers estimate the following

canonical regression:21

E [x̃nt] = α0 + α1EconCondnt +Controlsnt + εnt, (7)

where n is an index for the relevant units (districts, states, countries), t are relevant time

periods if present (days, months, years), Controlsnt are control variables, εnt is an error term,

and EconCondnt is the variable of interest, measuring the economic conditions of the citizens

(i.e., their opportunity costs) who potentially engage in illicit activity. The parameter α1

is the coefficient of interest, measuring the treatment effect of economic conditions.22

Our results imply that even if economic conditions were randomly assigned to units, the

coefficient α1 does not recover the accurate treatment effect. To see this, note that the

left-hand side of Equation 7 is just Pr(x̃ = 1 | s) and consider the following setup. We

assume that the agent’s motivation, β = 1, the effort costs ρ are drawn from N (0.5, 0.1),

the data manipulation cost η are drawn from U(0, 1.25), and the opportunity cost for illicit

behavior γ are drawn from N (ξ, 1). We vary the mean, ξ, to represent exogenous changes

to economic opportunities. When ξ is larger, the economy is better, so the target faces

higher expected opportunity costs when engaging in illicit activity.

Figure 4 graphs the equilibrium quantities of interest as a function the parameter ξ.

Notice that as economic opportunity increases, criminal activity decreases, which is the

first-order effect. This leads to reductions in enforcement effort, which subsequently reduces

misreporting as sending the no-crime report becomes less believable when effort is smaller.

Finally, measurement error is largest when ξ ≈ 0.91. At this moderate level of economic

opportunity, the likelihood of a the crime outcome Pr(x = 1|s) is not too small, and the

misreporting rate, Rs
1, is still substantial.

Figure 5 shows how these equilibrium quantities map onto crime outcomes and treatment

effects. The left panel graphs the probability that the enforcement game produces a law

enforcement statistic with crime (in blue) and then the probability that the agent reports

crime (in orange). Notice the orange line is weakly smaller than the blue line, reflecting

21To be precise, most scholarship utilizes data on the number of reported illicit activities in a given
location, per time unit. However, this is a consequence of data availability, not a substantive difference: in
principle, for sufficiently fine-grained location and time data, at most a single crime can occur. It is also
straightforward to generate count data from our model of individual encounters. To do so, denote by X̃
the number of crimes per time and location, and assume it is generated from a Binomial distribution with
n possible encounters and success probability p̃s ≡ Pr(x̃ = 1|s). Of course, this assumes that the number
of possible encounters is exogenous and that parameter values are the same for all possible encounters in a
given unit. However, it is straightforward to introduce additional randomness by varying other parameter
values. Similarly, the number of true crimes in the location is given by the variable X, which is given by a
binomial distribution with ps ≡ Pr(x = 1|s).

22At times, researchers focus on the crime rate, e.g., Bell, Bindler and Machin (2018).

27



Figure 4: Equilibrium quantities as a function of economic opportunity
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parameter ξ represents economic opportunity, which increases the expected opportunity costs of crime.
Grey line highlights the value that maximizes measurement error.
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Figure 5: Outcomes and treatment effects as a function of economic opportunity

0.0

0.1

0.2

0.3

0 1 2 3
Economic opportunity,  

P
r. 

cr
im

e

−0.2

0.0

0.2

0.4

0 1 2 3

Economic opportunity,   
Tr

ea
tm

en
t e

ffe
ct

Observed True

ξξ

Notes: Left panels graphs the true crime probability Pr(x = 1|s) in blue and the observed crime probability
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dξ

in blue and the observed treatment dPr(x̃=1|s)
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in orange. Example generated using same
assumptions as in Figure 4.

the fact that crime is under-reported in equilibrium, i.e., M s > 0. Even though the rate

of illicit activity decreases in ξ, this panel shows that the probability of the crime outcome

is a non-monotonic function of ξ. This non-monotonicity arises because enforcement effort

also decreases with greater economic opportunity, ξ.

The right panel in Figure 5 then graphs the true treatment effect ∂ Pr(x=1)
∂ξ in blue and

the observed treatment effect ∂ Pr(x̃=1)
∂ξ in orange. The difference between these two quan-

tities can be interpreted as bias from strategic misreporting. Notice that the observed

treatment effect can either underestimate (ξ < 0.91) or overestimate (ξ > 0.91) the true

treatment effect. As Proposition 6 demonstrates, the effect is underestimated when increas-

ing ξ increases measurement error. The effect is overestimated when increasing ξ reduces

measurement error.

Another pattern is that the difference in treatment effects is not a monotonic function of

measurement error. From the statistical literature on measurement error in the independent

variable, one can gain the intuition that as measurement error increases, (attenuation) bias

becomes more severe. In Figure 5, there is no difference between treatment effects (bias)

precisely when measurement error is maximal (ξ ≈ 0.91). This illustrates a consequence of

Proposition 6. When measurement error is at a local maximum, then ∂Ms

∂θ = 0, there is no

bias as the difference in treatment effects is zero.
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Finally, notice that maximal measurement error is not a necessary condition for no

bias. When economic opportunity is very small (ξ < 0) or large (ξ > 1.75), the difference

between the treatment effects is essentially zero. To see why, recall the discrete definition of

treatment effects in Equation 5. Plugging in the relevant quantities and simplifying shows

that

∆̃s′′
s′ −∆s′′

s′ =M s′ −M s′′ , (8)

i.e., the difference in treatment effects is equal to the difference in measurement errors.

Thus, when neither profile (s′ or s′′) features measurement error, the treatment effects are

equal, which is precisely the situation when ξ takes extreme values in Figures 4 and 5.

Conversely, ∆̃s′′
s′ > ∆s′′

s′ if and only M s′ > M s′′ . When M s′ > M s′′ , the observed effect

overestimates the true effect because it captures a decrease in under-reporting, and hence

more reported crime.

5 Discussion and Conclusion

5.1 Relationship to Existing Literature

In this section, we discuss our contribution in relation to the existing literature on measure-

ment error and its consequences for inference. Scholars are well aware that many variables in

the social sciences suffer from measurement error, especially variables collected via surveys,

and have made progress in understanding the consequences of measurement error for em-

pirical analysis (for an overview, see Bound, Brown and Mathiowetz 2001). One important

insight is that with a binary dependent variable, measurement error is always non-classical

and can seriously affect inferences about parameters (Bound, Brown and Mathiowetz 2001;

Meyer and Mittag 2017). Our results contribute to this line of work by demonstrating that

a particular kind of measurement error is in fact generic for enforcement data.

To see this, consider this canonical setup. Let n index observations 1, . . . , N , where

N is the sample size. The true data generating process, as a function of a parameter θn,

is assumed to be xn = θ′nβ + εn, where εn is the error term. F is the CDF of −εn. As

in the example in Section 4.3, we interpret θn to be a policy relevant variable such as

economic opportunity. The true outcome is given by the variable xn ∈ {0, 1} such that

Pr(xn = 1 | θn) = F (θ′nβ). However, the analyst is assumed to only observe the variable

x̃n ∈ {0, 1}. A key ingredient in this setup is interim misclassification probabilities, referred

as misreporting in our model. Using our notation—but omitting the reference to a strategy

profile s since these are not endogenously derived from equilibrium behavior—the interim

misclassification probabilities are

Pr(x̃n = 1|xn = 0) = R0(θn) and Pr(x̃n = 0|xn = 1) = R1(θn). (9)
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An important distinction is whether these depend on the value of the covariate of interest, θn.

If this is not the case, so that ∂R0
∂θn

= 0 as well as ∂R1
∂θn

= 0, then misclassification is considered

to be “conditionally random” (Hausman, Abrevaya and Scott-Morton 1998). By contrast,

if the misclassification probabilities do depend on the covariate θn, then misclassification is

not conditionally random and the partial derivatives of R0 and R1 with respect to θn are

not 0. These situations are depicted graphically in Figure 6.

Conditionally Random Not Conditionally Random

θ x

x̃

Treatment

True outcome

Reported outcome

θ x

x̃

Treatment

True outcome

Reported outcome

Figure 6: Existing approaches to measurement error.

Both types of misclassification can lead to bias. To see this, recall that a standard result

for non-linear models is that the true marginal effect for covariate θn is

∂ Pr(xn = 1 | θn)
∂θn

= f(θ′nβ)β.

However, the observed marginal effect is

∂ Pr(x̃n = 1 | θn)
∂θn

=
∂R0(θn)

∂θn︸ ︷︷ ︸
≡E1

−
(
∂R0(θn)

∂θn
+
∂R1(θn)

∂θn

)
F (θ′nβ)︸ ︷︷ ︸

≡E2

+(1−R0(θn)−R1(θn))f(θ
′
nβ)β︸ ︷︷ ︸

≡E3

.

(10)

When misclassification is conditionally random, then ∂Rk(θn)
∂θn

= 0, for k = 1, 2, which

implies (i) E1 = E2 = 0 and (ii) the observed marginal effect is attenuated (closer to zero)

if R0 + R1 < 1. The situation is even more complex and challenging if measurement error

directly depends on the value of the treatment. By inspection, the terms E1 and E2 can

either be negative or positive. As a consequence, when the rate of classification depends on

the observable variable, we cannot sign the bias from comparing the true marginal effect

and the observed marginal effect even if R0(θn) +R1(θn) < 1.

An example of this kind of pernicious measurement error is discussed in Weidmann

(2016) who studies the effects of cellphone coverage on violence. In that paper, cellphone

coverage has two effects. The first effect is that cellphones may help groups overcome collec-
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tive action problems to mobilize for violence (Pierskalla and Hollenbach 2013). The second

is that cellphones directly effect the reporting of violence (Dafoe and Lyall 2015). Weid-

mann (2016) shows that the second effect means that cellphone coverage directly influences

the misreporting rate of violence, making it difficult to estimate the first effect of cellphone

coverage on violence. Similarly, in Meyer and Mittag (2017), the misclassification probabil-

ities can be different for different units and dependent on the value of a covariate. Finally,

in Blattman et al. (2016), an observed variable is assumed to be a linear function of the

true variable and the treatment variable, implying that the treatment affects misreporting,

conditional on the true variable.

These data generating process are plausible and allow researchers to derive formulas for

biases in parameter estimates, often within a regression framework. For example, Bound,

Brown and Mathiowetz (2001) and Meyer and Mittag (2017) derive regression analogues of

our Proposition 6, showing that within their linear setup, the bias is equal to a regression of

measurement error on the covariate. Besides characterization of bias, a regression framework

also allows the development of a “diagnostic procedure” (Weidmann 2016) to test if biased

misreporting is an issue.23 However, in these cases, the data generating process connecting

the treatment, the true dependent variable, and the observed dependent variable is entirely

assumed and judgment on whether a variable directly affects the misreporting probability

is based on how plausible it is that the covariate in question, such as cellphone coverage,

directly affects misreporting.

By contrast, we assume a particular strategic situation between a citizen and an agent,

but then derive the data generating process connecting the treatment variable to the true

and observed outcome variables. Our model shows that the right panel in Figure 6 is in

fact the generic kind for enforcement agencies, as show in Figure 7.

θ Es, Cs x

Rs
1 x̃

Treatment Behavior True outcome

Reported outcomeMisreporting

Figure 7: Measurement error with endogenous behavior and misreporting.

As the Figure shows, in our model, a treatment is connected to both the true outcome

23Weidmann (2016) notes that datasets often contain information about violence severity, and argues that
high-severity events are less likely to be misreported. Hence, one should rerun the regression of cellphone
coverage on violence for different subsets of severity and assess whether results differ.
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and the observed outcome through our endogenous choices. Hence, for enforcement agen-

cies who are in charge of maintaining records, if a treatment has a causal effect on the

true outcome, it must have an effect on the misreporting probability. The reason is that

reporting is optimally conditioned on (expectations of) enforcement behavior. Hence, if a

variable affects behavior (and hence the true variable), it must also affect the misreporting

probability. Formally, in our model, the true outcome variable’s distribution is (1−Es)Cs.

The misreporting probability is Rs
1[E

s, Cs], with
∂Rs

1
∂Es > 0 and

∂Rs
1

∂Cs > 0. Thus, misreporting

depending on treatment status occurs whenever the treatment has an effect on the true

variable, x. The example in Section 4.3 illustrates this specific problem: economic oppor-

tunity has no direct effect on the agent’s reporting incentives, but it does directly affect

incentives for crime and enforcement. Because economic opportunity affects behavior in

the enforcement game, it affects the misreporting (interim misclassification) via the agent’s

signaling or reputational incentives.

Figure 7 illustrates that the bias is not created because of selection or more generally

confounding (which are the usual challenges to credible causal inference). In other words,

there are no backdoor paths from the treatment θ to either x or x̃. However, the researcher

is assumed not to have access to the true outcome variable x but has to rely on the observed

variable x̃, and there is an additional path, via the misreporting probability Rs
1, that con-

nects the treatment θ to x̃. Critically, that path runs through the key mediator behavior

(Es and Cs), meaning that the reason misreporting is a problem is the very reason the

treatment has an effect on the true outcome.

Returning to Expression 10, but assuming that R0(θn) = 0, which is an equilibrium

phenomenon in our model, we have:

∂ Pr(x̃n = 1 | θn)
∂θn

= −∂R1(θn)

∂θn
F (θ′nβ) + (1−R1(θn))f(θ

′
nβ)β

=− ∂R1(θn)

∂θn
Pr(xn = 1 | θn) + (1−R1(θn))

∂ Pr(xn = 1 | θn)
∂θn

,

where the second equality plugs in the general terms again. Comparing this with Corollary

1, shows that our model creates an inference problem in which the rate of misclassification

depends on the treatment, i.e., misclassification is not conditionally random.

This discussion highlights the importance of having an explicit model of enforcement

and reporting. Without such a model of misreporting, researchers might be stuck arguing

about particular exogenous data generating processes, and whether or not it is plausible

that a treatment directly affects the misreporting probabilities R0 and R1. This issue

affects work that starts from particular “structural” equations or from causal graphs. By

contrast, we instead start by assuming a particular kind of strategic interaction between law

enforcement agents and citizens, and endogenizing misreporting by enforcement agencies.

The key assumption is that agencies internalize a signaling or reputation incentive. Such
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an incentive likely exists when there is a third party—either internal to the agency like

a manager or external like a funding organization—that uses the reports to monitor the

agency’s behavior. Importantly, this yields an endogenous account of measurement error

that, in contrast to the data generating processes in Figure 6 cannot be formulated as a

directed acyclic graph (DAG). The reason is that in our model, there exists a reciprocal,

equilibrium relationship between behavior and misreporting—as highlighted by the two

arrows in Figure 7. As a consequence, while accounts that use DAGs as primitives capture

important intuitions and allow researchers to provide a classification of different kinds of

measurement error (as in Hernán and Cole 2009; Knox, Lucas and Cho 2022), they cannot

capture our data generating process and the kinds of inferential challenges that we highlight.

Our analysis shows why misclassification that is not conditionally random is in fact

a natural case to consider for data collected by enforcement agencies with signaling or

reputational concerns. Moreover, we emphasize that intervention aimed at decreasing mea-

surement error may actually backfire and worsen data quality. This also affects inferences,

so that empirical scholarship estimates of treatment effects can be under- or overestimated.

Given that scholarship extensively utilizes data by collected by law enforcement agencies

to answer research questions, our model provides a framework for thinking about the con-

sequences of such strategic misreporting.

5.2 Implications for Empirical Research

What are the implications of our theoretical model for empirical research? First, concerning

descriptive statistics, our analysis implies that it is useful to split up the data by crime

categories. In our model, crimes in which agent effort is necessary to uncover wrongdoings

(like speeding, or the possession of illegal substances) are over-reported whereas crimes

in which agent effort is important to reduce the opportunities for engaging in them (like

violent robbery) are under-reported. Importantly, this holds for a given distribution of

data manipulation costs, H, whereas, as we have shown, changing this distribution can

have counter-intuitive effects on misreporting and data quality. As a result, while it is

difficult to order data sets in terms of their quality as a function of (perceived) agency

misreporting costs, it is possible to make relative statements about misreporting for different

crime categories for a given agency.

Moreover, generally, observing reported crime over time (for a single agency) is not

sufficient for learning the rate of misclassification even if the costs of manipulation are

increasing (cf. Cook and Fortunato 2022). The reason is that, as we have shown, data

quality is a complicated function of manipulation costs, and it can decrease if manipulation

costs increase.

Second, concerning causal inferences, our main result is a negative one: if the agency

has any reputation incentives, i.e., cares about its perceived effort, the relationship between
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the true and the observed treatment effect will be too complex to meaningfully bound

treatment effects. In particular, the observed treatment effect can be too large or too small,

relative to the true treatment effect, and for a given treatment θ, signing the bias term

−∂Ms

∂θ is very difficult. The question is how to best deal with this issue. We discuss two

approaches that researchers can pursue.

One way is to gather additional data. For example, our Corollary 1 implies that con-

jectures about true treatment effects and the total effect of the treatment on misreporting,
dRs

1
dθ , one can, under some conditions, say if the observed treatment effect under- or over-

estimates the true treatment effect. Making an accurate conjecture about the total effect of

the treatment on the misreporting is obviously challenging as well. One solution comes from

audit studies in which (more) accurate data is obtained for a subset of units (Blattman et al.

2016; Garbiras-Dı́az and Slough 2022). This allows researchers to learn the probability of

misreporting and hence one can estimate the effect of the treatment on this probability. The

downside, of course, is that such a study is very costly and, partially as a result, sometimes

infeasible.

Another way is to deal with misreporting at the design stage, e.g., when designing a

field experiment. A broad conclusion from both informal reasoning and strategic informa-

tion models is that competition can often foster accurate communication (Gentzkow and

Shapiro 2008). This suggests that researchers should focus on implementing designs in areas

in which both the treatment and control groups are characterized by a competitive informa-

tion environment, either in terms of media, non-governmental organizations, or multiple

enforcement agencies (e.g., a Sheriff and the police department). We caution, however, that

one would ideally include these organizations as separate players in our model to evaluate

whether it is indeed the case that their inclusion decreases misreporting (by any one agency).

This is an important avenue for future work on the quality of administrative policing data.

Finally, we emphasize that our model can also be applied to other areas of interests.

Consider the following relabeling of our model: the agent is a repressive agent aligned with

an authoritarian regime. They can either repress a citizen when the citizen is trying to

vote for the opposition candidate or not (“effort”). In addition, they can falsify a vote if

it occurs (“misreporting”). The target is a citizen who can either attempt to vote for the

opposition candidate or not (“illicit activity”). That candidate’s true vote count is x and

the observed vote count is x̃. Our results imply that, consistent with conventional wisdom,

it is very difficult to learn accurate treatment effects from electoral statistics published by

authoritarian regimes.
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A Omitted proofs

A.1 Proof of Lemma 1

Proof. To prove (1), suppose the contrary. That is, suppose there exists equilibrium (s, b)

such that Pr(x̃ = 1) ∈ (0, 1) and either (i) Rs
0 > 0 or (ii) Rs

1 = 1.

First, we maintain (i) and show that a contradiction arises. To do this, consider the

reporting subgame after outcome x = 0. Because Rs
0 > 0, some agents must reclassify so

b1 − η > b0 for some η ∈ supp(H). Because min supp(H) = η ≥ 0, we must have b1 > b0.

Furthermore, b1 > b0 and η ≥ 0 imply that agents with outcome x = 1 will never reclassify,

so Rs
1 = 0.

We must either have Es = 0 or Es > 0. Suppose Es = 0. Because Pr(x̃ = 1) ∈ (0, 1),

both reports x̃ ∈ {0, 1} are sent with positive probability. As such Bayes rules implies

b1 = b0 = 0, a contradiction.

Suppose Es > 0, then crime outcome x = 0 occurs with positive probability. Because

i



Pr(x̃ = 1) ∈ (0, 1) by assumption, after seeing x̃ = 0, equilibrium beliefs satisfy Bayes rule:

b0 = Pr(e = 1 | x̃ = 0)

=
Pr(x̃ = 0 | e = 1)Pr(e = 1)

Pr(x̃ = 0)

=
(1−Rs

0)E
s

Pr(x̃ = 0 | x = 0)Pr(x = 0) + Pr(x̃ = 0 | x = 1)Pr(x = 1)

=
(1−Rs

0)E
s

(1−Rs
0)(1− Pr(x = 1))

,

where the last equality follows because Rs
1 = Pr(x̃ = 0 | x = 1) = 0. An implication of

the above logic is that Pr(x̃ = 1) ∈ (0, 1) implies Rs
0 < 1. If not, then Pr(x̃ = 1) = 1, a

contradiction. Likewise, after seeing x̃ = 1, equilibrium beliefs satisfy Bayes rule:

b1 = Pr(e = 1 | x̃ = 1)

=
Pr(x̃ = 1 | e = 1)Pr(e = 1)

Pr(x̃ = 1)

=
Rs

0E
s

Pr(x̃ = 1 | x = 0)Pr(x = 0) + Pr(x̃ = 1 | x = 1)Pr(x = 1)

=
Rs

0E
s

Rs
0(1− Pr(x = 1)) + Pr(x = 1)

Thus, we can write the difference in posteriors as

b1 − b0 =
Es(1 + Pr(x = 1)Rs

0)

(Pr(x = 1)− 1)(1−Rs
0)
.

Recall, Rs
0 < 1. Because Es > 0, Pr(x = 1) < 1. As such, the fraction above is negative.

But this means b1 < b0, a contradiction.

Second, we maintain (ii) and show that a contradiction arises. Consider the agent’s

reporting decision after outcome x = 1. Because Rs
1 = 1, the agent is misclassifying and

sending report x̃ = 0 with probability 1. We have already shown that Pr(x̃ = 1) ∈ (0, 1)

implies Rs
0 = 0, so x̃ = 0 is being sent with probability 1 after outcome x = 0. Hence,

Pr(x̃ = 1) = Pr(x̃ = 1 | x = 1)Pr(x = 1) + Pr(x̃ = 1 | x = 0)Pr(x = 0) = 0, a

contradiction.

To prove (2), suppose the contrary. That is, there exists equilibrium (s, b) such that

Pr(x̃ = 1) ∈ (0, 1) and Cs = 0. Because Cs = 0, the no crime outcome x = 0 is always

realized, i.e., Pr(x = 0) = 1. Because Rs
0 = 0 from result (1), the agent is sending report

x̃ = 0 with probability 1 after x = 0, i.e., Pr(x̃ = 1 | x = 0) = 1. Thus Pr(x̃ = 1) = Pr(x̃ =

1 | x = 0)Pr(x = 0) + Pr(x̃ = 1 | x = 1)Pr(x = 1) = 1, a contradiction.

To prove (3), suppose not. That is, there exists equilibrium (s, b) such that Pr(x̃ = 1) ∈
(0, 1) and Es = 1. Because Es = 1, the no crime outcome x = 0 is always realized. Because

ii



Rs
0 = 0 from result (1), the agent is sending report x̃ = 0 with probability 1 after the no

crime outcome. Like the proof for result (2), this leads to a contradiction.

A.2 Proof of Proposition 3

We have:
∂M s

∂Rs
1

= (1− Es)Cs > 0.

Moreover:
∂M s

∂Cs
= (1− Es)Rs

1 + Cs∂R
s
1

∂Cs
> 0,

where the inequality follows from
∂Rs

1
∂Cs > 0, as shown in Lemma 2.

Finally:

∂M s

∂Es
= −CsRs

1 + Cs(1− Es)
∂Rs

1

∂Es

= Cs

[
−Rs

1 + (1− Es)
∂Rs

1

∂Es

]
.

Plugging in Rs
1 = H(η̂∗) and

∂Rs
1

∂Es = h(η̂∗) ∂η̂
∗

∂Es yields:

∂M s

∂Es
= Cs

[
−H(η̂∗) + (1− Es)h(η̂∗)

∂η̂∗

∂Es

]
Re-arranging yields the condition stated the main text. Note that by Lemma 2, ∂η̂∗

∂Es > 0.

Hence, there are indeed competing effects

A.3 Proof of Proposition 4

Fix the full-support equilibrium (s, b) with effort threshold ρ̂∗, i.e., Λ(ρ̂∗)− ρ̂∗ = 0. Consider

first how an increase in σ affects the manipulation threshold η̂∗, which is defined as follows:

µ̄(F (ρ̂∗), G(1− F (ρ̂∗)), H(η̂∗ − σ))− η̂∗ = 0,

where Es = F (ρ̂∗) and Cs = G(1−F (ρ̂∗)). Recall that the PDFs f , g, and h are continuous

over their supports, so the CDFs F , G, and H are continuously differentiable (C1) over their

supports. Thus, the implicit function theorem implies that η̂∗ (when it is interior in the

support as in a full-support equilibrium) is C1 as a function of ρ̂∗ and σ. Specifically,

∂η̂∗

∂σ
= −

∂µ
∂Rs

0
h(η̂ − σ)(−1)

∂µ
∂Rs

0
h(η̂ − σ)− 1

> 0.
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So an increase in costs increases the threshold, implying higher stakes in Ψ. Also note

that ∂η̂∗

∂σ < 1. Hence, the equilibrium probability of manipulation Rs
1 = H(η̂∗(σ) − σ) is

decreasing in σ. This proves the first result in Proposition 4.

Second, we argue that Ψ (and as a consequence Λ) is C1 in ρ and σ. Recall that we can

write Ψ as a function of η̂∗ as follows:

Ψ(η̂∗) = (1−H(η̂∗))η̂∗ +

∫ η̂∗

η
ηh(η)dη︸ ︷︷ ︸
≡W

.

The first expression on the right-hand side of the above equation is C1 in ρ̂∗ and σ because

η̂∗ is C1. To see that the second expression is also C1, use Leibniz ’s rule to differentiate

W to get:
∂W

∂σ
= η̂∗h(η̂∗)

∂η̂∗

∂σ
and

∂W

∂ρ̂∗
= η̂∗h(η̂∗)

∂η̂∗

∂ρ̂∗
.

Because η̂∗ is C1 and h is continuous, these derivatives are also continuous. So Ψ is C1 in

ρ̂∗ and σ. Thus, Λ is also C1 given its definition and the C1 properties of G, F , and Ψ.

Third, we focus on how ρ̂∗ changes as a function of σ. By the implicit function theorem,

we have:
∂ρ̂∗

∂σ
= −

∂Λ
∂σ

∂Λ
∂ρ̂ − 1

,

which is well-defined because Λ′(ρ̂∗) ̸= 1. Since σ affects Λ only through Ψ, it is enough to

investigate how Ψ changes as σ changes. We have:

dΨ

dσ
= −h(η̂∗ − σ)

(
∂η̂∗

∂σ
− 1

)
η̂∗ + (1−H(η̂∗ − σ))

∂η̂∗

∂σ
+

η̂∗h(η̂∗ − σ)
∂η̂∗

∂σ
−
(
η + σ

)
h(η) +

∫ η̂∗

η+σ
ηh′(η − σ)(−1)dη

= h(η̂∗ − σ)η̂∗ −
(
η + σ

)
h(η) + (1−H(η̂∗ − σ))

∂η̂∗

∂σ
−
∫ η̂∗

η+σ
ηh′(η − σ)dη

This cannot be signed in general, but it is in particular positive if H is the Uniform distri-

bution. The reason is that in this case, the derivative of the density is 0 and the density is

a constant. Since η̂∗ > η + σ in an interior equilibrium, we have that ∂Ψ
∂σ > 0.

Thus, we need to verify that ∂Λ
∂ρ̂

∣∣
ρ̂=ρ̂∗

< 1. We show that this is implied by the game

having a unique equilibrium, i.e., Λ(ρ̂) = ρ̂ has a unique solution. We also assume that

G(1) < 1, which makes b0 well-defined for all Es, F (G(1)β) > 0, and F (G(0)(β + 1)) < 1.

To cover both the case in which F has bounded support and in which the support of F

is the entire real line, we denote by ρ the minimum of the support of F or ρ = −∞ in the

case that the support is not bounded below. Similarly, ρ is the maximum of the support of
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F or ρ = ∞ in the support is not bounded above.

First observe that, as ρ̂ → ρ, F (ρ̂) → 0. Because G(1) < 1, µ̄(0, G(1), Rs
1) = 0 for all

Rs
1 ∈ [0, 1]. As such, η̂ = 0 is the unique solution to µ̄(0, G(1), H(η̂)) = η̂, which means

Ψ(0, G(1)) = 0. Because Ψ is continuous,

lim
ρ̂→ρ

Ψ(F (ρ̂), G(1− F (ρ̂))) = Ψ(0, G(1)) = 0.

Putting this altogether, gives us

lim
ρ̂→ρ

Λ(ρ̂) = lim
ρ̂→ρ

G(1− F (ρ̂))β + lim
ρ̂→ρ

G(1− F (ρ̂))Ψ(F (ρ̂), G(1− F (ρ̂)))

= G(1)β +G(1)0

= G(1)β > ρ.

The last inequality follows from F (G(1)β) > 0, which implies G(1)β > ρ because F (ρ) = 0

and F is increasing.

Similarly, consider ρ̂ → ρ, which means F (ρ̂) → 1. Then η̂∗ = 1 is the unique solution

to µ̄(1, G(0), H(η̂)) = η̂, which means Rs
1 = H(1). Because Ψ is continuous,

lim
ρ̂→ρ

Ψ(F (ρ̂), G(1− F (ρ̂))) = Ψ(1, G(0)).

As a result:

lim
ρ̂→ρ

Λ(ρ̂) = G(0) (β +Ψ(1, G(0))) ≤ G(0) (β + 1) .

The inequality follows because Ψ is always bounded above by 1. We require G(0) (β + 1) <

ρ, which is implied by F (G(0)(β + 1)) < 1.

Now consider Q(ρ̂) ≡ Λ(ρ̂)− ρ̂. By above, Q is continuously differentiable as a function

of ρ, and

lim
ρ̂→ρ

Q(ρ̂) > 0

while

lim
ρ̂→ρ

Q(ρ̂) < 0.

If there is a unique solution such that Q(ρ̂∗) = 0, it must be the case that Q′(ρ̂∗) < 0. To

see this, suppose not. Then Q′(ρ̂∗) ≥ 0. But then Λ′(ρ̂∗) ̸= 1 implies Q′(ρ̂∗) > 0. Because

Q is C1, there exist ϵ > 0 such that Q(ρ̂∗ + ϵ) > 0. Recall that limρ̂→ρ Q(ρ̂) < 0. Because

Q is continuous, the intermediate value theorem implies there exists ρ̂∗∗ ∈ (ρ̂∗, ρ̄) such that

Q(ρ̂∗∗) = 0. But then ρ̂∗∗ pins down another full-support equilibrium, a contradition. Thus,

Q′(ρ̂∗) < 0, which means that ∂Λ
∂ρ̂

∣∣
ρ̂=ρ̂∗

< 1.
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A.4 Proof of Proposition 5

Note that Lemma 1 establishes that if the actual law enforcement statistic is produced by

x = (1 − e)c, and both reports are sent in equilibrium, then Rs
0 = 0 and Rs

1 < 1. Then

M s takes the form M s = (1 − Es)CsRs
1 ≥ 0, as discussed in Section 4.1. To establish the

corresponding result when the actual law enforcement statistic is produced by x = ec, we

first prove the following lemma:

Lemma A.1. Assume x = ec. If (s, b) is a equilibrium such that both reports are sent, i.e.,

Pr(x̃ = 1) ∈ (0, 1), then the following hold:

1. Rs
1 = 0 and Rs

0 < 1.

2. either Cs < 1 or Es < 1.

Proof. Suppose the contrary. That is, there exists equilibrium (s, µ) is a equilibrium such

that Pr(x̃ = 1) ∈ (0, 1) and either (i) Rs
1 > 0 or (ii) Rs

0 = 1.

First, we maintain (i) and show that a contradiction arises. If Rs
1 > 0, then since

η > 0, we must have b0 > b1. Now consider the reporting decision after x = 0 (may be

off-the-path). The expected utility of reporting x̃ = 1 is b1 − η while the expected utility of

reporting x̃ = 0 is b0. Thus b0 > b1 − η and Rs
0 = 0.

Consider several cases:

1. If Pr(x = 0) = 1, Pr(x̃ = 1) = 0, a contradiction.

2. If Pr(x = 0) < 1 and Rs
1 = 1, then again Pr(x̃ = 1) = 0, a contradiction.

3. If Pr(x = 0) < 1 (which in particular implies Cs > 0) and Rs
1 < 1, then both b1 and

b0 can be computed from Bayes’ rule:

b1 =
Es [Cs(1−Rs

1) + (1− Cs)0]

EsCs(1−Rs
1) + (1− EsCs)0

=
EsCs(1−Rs

1)

EsCs(1−Rs
1)

Also:

b0 =
Es [CsRs

1 + (1− Cs)1]

EsCsRs
1 + (1− EsCs)1

By inspection, b1 = 1 while b0 ≤ 1 (with strict inequality if Es < 1), a contradiction.

Second, we maintain (ii) and show that a contradiction arises. Consider the agent’s reporting

decision after outcome x = 0. Because Rs
0 = 1, the agent is misclassifying and sending report

x̃ = 1 with probability 1. We have already shown that Pr(x̃ = 1) ∈ (0, 1) implies Rs
1 = 0,

so x̃ = 1 is being sent with probability 1 after outcome x = 1. Hence, Pr(x̃ = 0) = Pr(x̃ =

0|x = 1)Pr(x = 1) + Pr(x̃ = 0|x = 0)Pr(x = 0) = 0, a contradiction.

To prove (2), suppose the contrary. That is, there exists equilibrium (s, b) such that

Pr(x̃ = 1) ∈ (0, 1) and Cs = Es = 1. Because Cs = 1 = E1, the crime outcome x = 1 is

always realized, i.e., Pr(x = 1) = 1. Because Rs
1 = 0 from result (1), the agent is sending
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report x̃ = 1 with probability 1 after x = 1, i.e., Pr(x̃ = 1|x = 1) = 1. Thus Pr(x̃ = 1) =

Pr(x̃ = 1|x = 0)Pr(x = 0) + Pr(x̃ = 1|x = 1)Pr(x = 1) = 1, a contradiction.

Proposition 5 then follows because the lemma allows us to write measurement error as:

M s = Pr(x = 1|s)− Pr(x̃ = 1|s) = EsCs − [EsCs + (1− EsCs)Rs
0] = −(1− EsCs)Rs

0 ≤ 0

A.5 Proof of Proposition 6

This follows from:

∂ Pr(x = 1)

∂θ
− ∂ Pr(x̃ = 1)

∂θ
=
∂ Pr(x = 1)− Pr(x̃ = 1)

∂θ
=
∂M s

∂θ
.

B Sufficient conditions for all equilibria to have full support

Fact B.1. In every equilibrium (s, b), Cs ∈ [G(0), G(1)].

Lemma B.1 states three sufficient conditions for the reporting subgame to be well defined

in the sense that Es ∈ (0, 1) means there is uncertainty over whether or not the agent exerted

effort and Cs > 0, along with E ∈ (0, 1), means that both LE statistics x ∈ {0, 1}, i.e.,
signals about effort, arise with positive probability.

Lemma B.1. The following implications hold:

1. G(1− F (0)) > 0 implies Cs > 0 in equilibrium (s, b).

2. η = 0 and 0 < F (G(1)β) imply Es > 0 in equilibrium every equilibrium (s, b).

3. F (G(0)β + 1) < 1 implies Es < 1 in equilibrium (s, b).

Proof. To see (1), suppose the contrary. So there exists equilibrium (s, b) such that Cs = 0.

Then x = 0, regardless of whether the agent works or shirks. So we can write the expected

utility of working as −ρ+
∫
max{b0, b1 − η}h(η)dη. The expected utility of not working is∫

max{b0, b1 − η}h(η)dη. As such, the agent works if and only if ρ ≤ 0, so Es = F (0). If

the target engages in illegal activity, their expected payoff is (1 − Es)1 − γ. If the target

does not engage, their payoff is 0. So Cs = G(1− Es) = G(1− F (0)) > 0.

To see (2), suppose the contrary. So there exists equilibrium (s, b) such that Es = 0

when 0 < F (G(1)β). First, either Pr(x̃ = 1) > 0 or Pr(x̃ = 0) > 0. If Pr(x̃ = 1) > 0, then

Bayes rules implies b1 = 0. If b0 > 0, then agents in the reporting subgame with η < b0− b1
would submit x̃ = 0. Because min supp(H) = η = 0, H(b0 − b1) > 0. Thus, report x̃ = 0

would be sent with positive probability given s, implying b0 = 0. A similar argument shows

that Pr(x̃ = 0) > 0 implies b0 = b1 = 0. Second, Es = 0, so the target chooses c = 1 if and

essentially only if γ < 1. Thus, Cs = G(1). Finally, consider the agent with ρ′ < G(1)β. If
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she exerts effort, then her expected payoff is Csβ − ρ. If she does not exert effort, then her

expected payoff is 0. Because ρ′ < G(1)β, this agent works. Thus Es ≥ F (G(1)β) > 0.

To see (3), suppose the contrary. So there exists equilibrium (s, b) such that Es = 1

when F (G(0)β + 1) < 1. There exists report r ∈ {0, 1} such that Pr(x̃ = r) > 0. After

such a report, Bayes rule implies br = 1. First, Es = 1, so the target chooses c = 1 if and

essentially only if γ < 0. Thus, Cs = G(0). Consider the agent with ρ′ > G(0)β + 1. If

this agent works, at best she expects to get Csβ − ρ′ + 1, where Csβ − ρ′ is their expected

utility from the encounter after working, and 1 is their maximum payoff from the reporting

and assessment stage. If this agent does not work, at worst she expects to get 0, where

0 is their payoff in the encounter after not working and 0 is the minimum payoff from

the reporting and assessment stage. Because ρ′ > G(0)β + 1, this agent shirks. Thus,

Es ≤ 1− F (G(0)β + 1) < 1.

Lemma B.2. If H(F (G(1)(β + E[η]))) < 1, then Rs
0 = 0 and Rs

1 < 1 in every equilibrium

(s, b).

Proof. To see that Rs
0 = 0, suppose the contrary. That is, suppose there exists equilibrium

(s, b) such that Rs
0 > 0. Thus, some agents with lying costs η are reclassifying after outcome

x = 0. After these agents reclassify by reporting x̃ = 1, their (net-of-encounter) payoffs are

b1 − η. If these agents were not to reclassify by reporting x̃ = 0, there (net-of-encounter)

expected payoffs are b0. Because η ≥ 0 and Pr(η > η) = 1, b1 > b0. Furthermore, b1 > b0

and η ≥ 0 imply that agents with outcome x = 1 will never reclassify, so Rs
1 = 0.

Now we can write probability that report x̃ = 0 is sent in equilibrium as

Pr(x̃ = 0) = Pr(x̃ = 0|x = 1)Pr(x = 1) + Pr(x̃ = 0|x = 0)Pr(x = 0)

= Rs
1 Pr(x = 1) + (1−Rs

0) Pr(x = 0)

= (1−Rs
0)(E

s + (1− Es)(1− Cs)).

Above, the first equality is the law of total expectations, and the second follows from the

definition of Rs
x. The third follows because Rs

1 = 0. We consider two cases.

Case 1: Pr(x̃ = 0) > 0. That is, the report x̃ = 0 is being sent with positive probability

in equilibrium (s, b). After seeing x̃ = 0, equilibrium beliefs are then computed via Bayes

rule:

b0 = Pr(e = 1|x̃ = 0)

=
Pr(x̃ = 0|e = 1)Pr(e = 1)

Pr(x̃ = 0)

=
(1−Rs

0)E
s

(Es + (1− Es)(1− Cs))(1−Rs
0)
.
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Second, note that

Pr(x̃ = 1) = (Es + (1− Es)(1− Cs))Rs
0 + (1− Es)Cs > 0.

Thus, after seeing x̃ = 1, equilibrium beliefs are also computed via Bayes rule:

b1 = Pr(e = 1|x̃ = 1)

=
Pr(x̃ = 1|e = 1)Pr(e = 1)

Pr(x̃ = 1)

=
Rs

0E
s

(Es + (1− Es)(1− Cs))Rs
0 + (1− Es)Cs

.

After some algebra, we can compute the difference in beliefs as

b1 − b0 =
Cs(Es − 1)Es

(1− Cs(1− Es))(Cs(1−Rs
0)(1− Es) +Rs

0)
≤ 0,

because Es ≤ 1. This contradicts b1 > b0, however.

Case 2: Pr(x̃ = 0) = 0. That is, the report x̃ = 1 is being sent with probability 1 in

equilibrium (s, b). As such b1 = Es, that is the posterior should equal the prior. Recall,

b1 > b0, so E
s > 0, which in turn implies Pr(x = 0) > 0. Because Pr(x̃ = 0) = 0, after

outcome x = 0, the agent must surely misreport, which means b1−η ≥ b0 for all η ∈ suppH.

As such H(b1 − b0) = 1, and we can substitute for H(Es − b0) = 1 as b1 = Es. Then note

that H is increasing and b0 ≥ 0. So H(Es− b0) = 1 implies H(Es) = 1. Next, we derive an

upper bound on Es and show that the equality, H(Es) = 1, cannot hold. After working in

the encounter stage, the crime outcome will be x = 0, which will be reclassified as Rs
0 = 1.

Thus, the agent’s expected utility from working is

βCs − ρ+ b1 − E[η].

After not working, with probability Cs, the outcome will be x = 1, which will not be

reclassified, but with probability 1−Cs the outcome will be x = 0, which will be reclassified.

Thus, the agent’s expected utility from not working is

(1− Cs)(b1 − E[η]) + Csb1.

Comparing these utilities reveals that, if ρ > Cs(β − E[η]), then the agent will not work.

Thus, Es is bounded above by F (Cs(β − E[η])). Because F is increasing and Cs ≥ 0, Es

is bounded above by F (Cs(β + E[η])). Because Cs ∈ [G(0), G(1)], Es is bounded above by

F (G(1)(β+E[η])). Thus, H(Es) ≤ H(F (G(1)(β+E[η]))) < 1. But then H(Es) ̸= 1, which

is the desired contradiction.

Hence, we conclude Rs
0 = 0. Next we argue that Rs

1 < 1 in every equilibrium (s, b). To

ix



see this, suppose not. That is, suppose there exists equilibrium (s, b) such that Rs
1 = 1. By

previous argument, we know Rs
0 = 0. Thus, report x̃ = 0 is being sent with probability 1,

so b0 = Pr(e = 1|x̃ = 0) = Es. Furthermore, for all η ∈ supp H, we must have b0 − η ≥ b1,

or Es − η ≥ b1. Thus, Rs
1 = H(Es − b1) = 1. As above, a necessary condition for this

equality to hold is H(Es) = 1. Now we derive an upper bound on Es, and show that the

equality, H(Es) = 1, cannot hold. If the agent works, then her payoff is βCs − ρ + b0.

If the agent shirks, then her payoff is b0 − CsE[η]. Comparing these utilities reveals that

the Agent does not work if ρ > Cs(β + E[η]), so Es is bounded above by F (Cs(β + E[η])).
This expression is strictly increasing in Cs, where Cs ≤ G(1). So Es is bounded above by

F (G(1)(β + E[η])). Thus, H(Es) ≤ H(F (G(1)(β + E[η]))) < 1, a contradiction.

The final lemma says that when both law enforcement outcomes x ∈ {0, 1} are realized,

then a truthful equilibrium does not exist if η = 0.

Lemma B.3. Consider an equilibrium (s, b) such that Es < 1, Cs > 0, Rs
0 = 0. If η = 0,

then Rs
1 > 0

Proof. Suppose the contrary. That is, assume η = 0, and suppose (s, b) is an equilibrium

such that Es < 1, Cs > 0, and Rs
0 = Rs

1 = 0. First notice that Es < 1 and Cs > 0 imply

both LE outcomes x ∈ {0, 1} occur with positive probability. Second, because the agent is

truthful and is not reclassifying, both reports x̃ ∈ {0, 1} are sent with positive probability.

After report x̃ = 1, the agent is not reclassifying (as Rs
1 = 0) so we must have b1 = 0

by Bayes rule. After report x̃ = 0, the agent is not reclassifying, and b0 can be computed

using Bayes rule as well:

b0 = Pr(e = 1 | x̃ = 0)

=
Pr(x̃ = 0 | e = 1)Pr(e = 1)

Pr(x̃ = 0 | e = 1)Pr(e = 1) + Pr(x̃ = 0 | e = 0)Pr(e = 0)

=
Es

Es + (1− Es)(1− Cs)
> 0.

But then b0 > b1. Thus, in the reporting subgame after outcome x = 1, agents with

η < b0 − b1 send message x̃ = 0. Hence, Rs
1 ≥ H(b0 − b1). Because η = min suppH = 0,

H(b0 − b1) > 0, so Rs
1 > 0. This established the desired contradiction.

Definition B.1. Equilibrium (s, b) has full support if Es ∈ (0, 1), Cs > 0, Rs
0 = 0 and

Rs
1 ∈ (0, 1)

Proposition B.1. All equilibria have full support if the following conditions hold:

1. G(1− F (0)) > 0,

2. 0 < F (G(1)β),
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3. F (G(0)β + 1) < 1,

4. η = 0,

5. H(F (G(1)(β + E[η]))) < 1.

Proof. The result follows immediately from Lemmas B.1, B.2, and B.3.

The conditions in Proposition B.1 are fairly innocuous. Conditions 1–3 are satisfied if

F and G have full support over R, e.g., F and G are normal distributions. If F and G have

interval support, e.g., suppF = [ρ, ρ̄] and suppG = [γ, γ̄], then Conditions 1–3 are satisfied

if ρ = γ = 0 and ρ̄ > 1. Conditions 4 and 5 are satisfied if H is the exponential distribution

or if it is the uniform distribution with over [0, 1] with F (G(1)(β + 0.5)) < 1.

C Agents with types and relevant reputation concerns

In the baseline version of the model, the agent internalizes the beliefs of a third party about

whether or not she exerted effort. Although this could be interpreted as retrospective

support or capturing how an agency’s funding depends on third parties believing that they

are hard working, it could be the case that agent cares about maintain a reputation that she

is a hard-working innate type. In this Appendix, we consider such a version of the model.

In this version, there are two agent types: a diligent type (τ = D) and a lazy type

(τ = L). Lazy types of agents always have high costs of effort, i.e., ρ = ∞. That is, lazy

types always choose e = 0. Diligent types of agents have effort costs ρ drawn from F in the

baseline model. The timing and interaction are the same as in the baseline model, but now

the third party beliefs are

bx̃ = Pr(τ = D | x̃).

Specifically, the following summarize the timeline of this game:

1. Nature draws the type τ ∈ {D,L}, with Pr(τ = D) = π.

2. T observes the opportunity cost γ ∼ G. A observes τ and the cost of effort ρ, where

ρ ∼ F if τ = D and ρ = ∞ if τ = L.

3. Simultaneously, A chooses effort e and T chooses behavior c.

4. Enforcement payoffs are realized.

5. The law enforcement outcome is produced with the technology x = (1− e)c.

6. A sees x and cost of manipulating data η ∼ H.

7. A writes a report x̃ ∈ {0, 1}.
8. A receives reporting payoffs bx̃ − ηI[x̃ ̸= x], where bx̃ = Pr(τ = D | x̃).
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C.1 Analysis

Notice that conditional on the realizations of ρ and η, the expected payoffs for the two types

of actors are identical. As such, strategies and equilibria are the same as in the baseline

model. In addition, it is useful to work with the corresponding higher-order probabilities:

Es
τ = Pr(e = 1 | s, τ) =


∫
I[senA (ρ) = 1]f(ρ)dρ if τ = D

0 if τ = L
,

where Es
τ is the probability that A exerts high effort given type τ , where we are explicitly

imposing the equilibrium condition that L-types with ρ = ∞ will never exert high effort.

In addition, consider agent A with type τ ∈ {D,L} in the reporting subgame with data

manipulation costs η. When she sends a report x̃, she receives bx̃ − ηI[x̃ ̸= x]. Notice,

this payoff is independent of type τ . Thus, A with type τ and cost η sends report x̃ after

outcome x if and only if A with type τ ′ ̸= τ and cost η sends report x̃ after outcome x. So

conditioning on η and x, the decision to reclassify does not depend on type τ . In addition,

η is a random variable drawn from H, which also does not depend on τ . As such, the agents

of τ = D and τ = L will reclassify at identical rates, so we define:

Rs
x = Pr(x̃ ̸= x | x, s) =

∫
I[sreA (x, η) ̸= x]h(η)dη.

As in the baseline model, we want to characterize full-support equilibria. In this context,

we study equilibria (s, b) such that Es
D ∈ (0, 1), Cs > 0, Rs

0 = 0, and Rs
1 ∈ (0, 1).

First consider the reporting stage. After a message x̃ = 1, we want to compute

b1 = Pr(D | x̃ = 1)

=
Pr(x̃ = 1 | τ = D) Pr(τ = D)

Pr(x̃ = 1)

=
(1− Es

D)C
s(1−Rs

1)π

Pr(τ = D) Pr(x̃ = 1 | τ = D) + Pr(τ = L) Pr(x̃ = 1 | τ = L)

=
(1− Es

D)C
s(1−Rs

1)π

π(1− Es
D)C

s(1−Rs
1) + (1− π)(1− Es

L)C
s(1−Rs

1)

=
(1− Es

D)(1−Rs
1)π

π(1− Es
D)(1−Rs

1) + (1− π)(1−Rs
1)
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After message x̃ = 0, we want to compute

b0 =
Pr(x̃ = 0 | τ = D) Pr(τ = D)

Pr(x̃ = 0)

=
(1− Pr(x̃ = 1 | τ = D)) Pr(τ = D)

1− Pr(x̃ = 1)

=
[1− (1− Es

D)C
s(1−Rs

1)]π

1− [Pr(τ = D) Pr(x̃ = 1 | τ = D) + Pr(τ = L) Pr(x̃ = 1 | τ = L)]

=
[1− (1− Es

D)C
s(1−Rs

1)]π

1− [π(1− Es
D)C(1−Rs

1) + (1− π)(1− Es
L)C

s(1−Rs
1)]

=
[1− (1− Es

D)C(1−Rs
1)]π

1− Cs[π(1− Es
D)(1−Rs

1) + (1− π)(1−Rs
1)]
.

Finally, we can compute the difference in posteriors as

b0 − b1 =
Es

Dπ(1− π)

(1− Es
Dπ)(1− Cs(1− Es

Dπ)(1−Rs
1))

≡ µ̄(Es
D, C

s, Rs
1) > 0.

The next result follows from the above derivation of µ̄.

Proposition C.1. When the agents have types and reputation concerns about types, the

difference in posteriors µ̄ has partial derivatives with signs that match the baseline model,

i.e., ∂µ̄
∂Es

D
> 0, ∂µ̄

∂Cs > 0, and ∂µ̄
∂Rs

1
< 0.

To finish characterizing full-support equilibria, regardless of τ , after crime outcome

x = 1, the agent compares b1 to b0 − η. Thus, a threshold strategy is optimal. Because

η ∼ H, for all candidates, we can write the equilibrium threshold η̂ as solving the following

equation:

η̂ = µ̄(Es
D, C

s, H(η̂)). (C.1)

Equation C.1 matches Equation 1 from the baseline model, so the next result follows from

an identical application of the implicit function theorem.

Proposition C.2. When the agents have types and reputation concerns about types, the

equilibrium threshold η̂∗ has partial derivatives with signs that match the baseline model,

i.e.,

∂η̂∗

∂Es
D

= −
∂µ̄
∂Es

D

∂µ̄
∂Rs

1
h(η̂∗)− 1

> 0 and
∂η̂∗

∂Cs
= −

∂µ̄
∂Cs

∂µ̄
∂Rs

1
h(η̂∗)− 1

> 0.

Thus, we need to solve for Es
D and Cs. If T engages in illicit activity, then his expected

payoff is (1 − πEs
D) − γ. If not, his expected payoff is 0. So a threshold strategy is also

optimal where

γ̂ = (1− πEs
D) (C.2)
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and Cs = G(1− πEs
D).

For A with τ = D, if she exerts effort, then the crime outcome will for sure be x = 0 and

the report will be x̃ = 0. Thus, after exerting effort, her expected payoff is Csβ − ρ+ b0. If

A with τ = D does not exert effort, then her expected payoff is

(1− Cs)b0 + Cs [(1−Rs
1)b1 +Rs

1(b0 + E[η|η ≤ µ̄(Es
D, C

s, Rs
1)])] .

Thus, the diligent agent uses a threshold strategy, with threshold ρ̂. So the diligent agent

exerts effort if and only if ρ < Cs [β +Ψ(Es
D, C

s)] where

Ψ(Es
D, C

s) = (1−Rs
1)µ̄(E

s
D, C

s, Rs
1) +Rs

1E[η|η ≤ µ̄(Es
D, C

s, Rs
1)]

= (1−H(η̂∗))η̂∗ +

∫ η̂∗

η
ηh(η)dη.

Notice that the derivation of Ψ matches the derivation in the baseline model. As such, the

next result follows immediately from the previous two propositions in this section.

Proposition C.3. When the agents have types and reputation concerns about types, the

equilibrium dynamic incentives to work, Ψ, have partial derivatives with signs that match

the baseline model, i.e., ∂Ψ
∂Es

D
> 0 and ∂Ψ

∂Cs > 0.

Recall that Es
D = F (ρ̂) and the target’s best response to ρ̂ is Cs = G(1 − πF (p̂)).

Plugging this into the preceding expressions, a full-support equilibrium (s, b) is characterized

by a threshold strategy, ρ̂∗, that solves

G(1− πF (ρ̂))[β +Ψ(F (ρ̂), G(1− πF (ρ̂)))]︸ ︷︷ ︸
≡Λ(ρ̂)

= ρ̂. (C.3)

Together, Equations C.1, C.2, and C.3 characterize full-support equilibria in an identical

manner as in the statement of Proposition 1.

C.2 Comparison to baseline model

To compare the two models, we consider a numerical example where we assume the follow-

ing:

γ ∼ N (0.4, 0.25) ρ ∼ N (0.5, 0.2) η ∼ U(0, 0.75) β = 0.3.

These distributional assumptions are fixed across the baseline and type-extension model.

For the latter, we treat the prior probability of a diligent type π as a free parameter.

To begin the model comparison, Figure C.1 graphs an agent’s incentives (vertical axis)

for effort given a fixed belief about effort (horizontal axis). These are partial equilibrium
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Figure C.1: Incentives for enforcement effort across the models.
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Notes: Horizontal axis is the fixed probability of effort which is Es in the baseline model and Es
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the type-extension model. Crime rates are computed assuming equilibrium behavior of the target, i.e.,
Cs = G(1 − Es) in the baseline and Cs = G(1 − πEs

D) in the type-extension model. Example generated
assuming γ ∼ N (0.4, 0.25), β = 0.3, ρ ∼ N (0.5, 0.2), and η ∼ U(0, 0.75). The prior of the diligent type,
π ∈ (0, 1) is a free parameter for the type-extension model.

results, so the horizontal axis means a fixed Es in the baseline model or a fixed Es
D in

the type-extension model. The left panel shows the static incentives for effort. Notice,

the baseline model has the smallest static incentives. Recall that in the baseline model

Cs = G(1 − Es) in Equation 2, but in the type extension Cs = G(1 − πEs
D) in Equation

C.2. Thus, there is greater criminal activity in the type extension because with probability

1− π > 0, an agent is lazy and never exerts effort. As a consequence, criminal activity and

therefore static incentives are larger as the prior probability of a diligent type decreases.

Figure C.1’s right panel graphs the dynamic incentives for effort, and there are two key

takeaways. Most importantly, the baseline model generally has larger dynamic incentives

for effort, especially when equilibrium effort is not expected to be too large. To see why,

recall that equilibria in baseline and type-extension models can be described by triples

(Es, Cs, Rs
1) and (Es

D, C
s, Rs

1), respectively. If (E
s, Cs, Rs

1) = (Es
D, C

s, Rs
1), then the differ-

ence in posteriors in the baseline model (µ̄ as defined in main text) is always larger than

then difference in posteriors in the extension (µ̄ as defined above). So the stakes of reporting

game are smaller in the extension and than in the baseline model all else equal. This implies

larger dynamic effort incentives in the baseline model. However, as enforcement effort gets

larger, criminal activity decreases, so Cs is quite small on the right-hand-side of this panel.

This effect is particularly strong in the baseline model, where there are no lazy types who
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Figure C.2: Equilibrium effort, criminal activity, and misreporting across the models.
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D. Example
generated using the same assumptions as Figure C.1.

always exert low effort, which is why the baseline model has smaller dynamic incentives for

effort with large Es.

Second, in the type extension, the dynamic incentives for effort are largest when the prior

is neither too large nor too small. When the prior is extreme, reporting no crime does not

substantively change third-party beliefs about the agent’s type. Furthermore, comparing

the extreme cases, there are larger dynamic incentives when diligent types are rare (i.e.,

π = 0.2) than when diligent types dominate (i.e., π = 0.8). This asymmetry emerges via

the target’s best response. All else equal, the rate of criminal activity Cs is larger when π

is close to zero rather than close to one, which implies the dynamic incentives for effort will

be larger in the former case.

As a consequence of the above discussion, equilibrium effort can be larger or smaller in

the type-extension than in the baseline model, and this will depend on the prior. To see this,

Figure C.2 graphs the equilibrium probabilities of effort, criminal activity, and misreporting.

Note that, in the left panel, we graph the probability of effort of a diligent type, Es
D in blue.

This probability is larger than the probability of effort in the baseline model when π is

moderate, where dynamic incentives for effort are the largest. In contrast, this probability

is smaller than the probability of effort in the baseline model when π is extreme (i.e., close

to 0 or 1). For these values, dynamic incentives for effort are the smallest.
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D Analysis with probabilistic crime production

In this Appendix, we assume that crime is produced probabistically. One can motivate

this as follows: with probability α, x = (1 − e)c; with complementary probability 1 − α,

x = c. Thus, we interpret α as how sensitive the crime outcome is to enforcement effort.

The baseline model covered the case where α = 1, when high effort surely prevented crime.

As α becomes smaller, high enforcement effort does not necessarily prevent crime from

occurring, and illicit activity becomes more important to crime production. We can write

the probability of a crime outcome as

Pr(x = 1 | e, c) =

c if e = 0

(1− α)c if e = 1
.

We will characterize “full support” equilibria, i.e.: (i) Es ∈ (0, 1) and Cs > 0, (ii) after

x = 0, the agent reports truthfully by sending x̃ = 0, and (iii) after x = 1, the agent

potentially reclassifies the crime statistic by sending x̃ = 0.

To begin the analysis, note that after observing x̃ = 1, we know the true outcome was

x = 1. We need to compute:

Pr(e = 1 | x̃ = 1) =
Pr(x̃ = 1 | e = 1)Pr(e = 1)

Pr(x̃ = 1)

=
Pr(x̃ = 1 | e = 1)Es

Pr(x̃ = 1 | x = 0)Pr(x = 0) + Pr(x̃ = 1 | x = 1)Pr(x = 1)

=
[Pr(x̃ = 1|e = 1, x = 0)Pr(x = 0|e = 1) + Pr(x̃ = 1|e = 1, x = 1)Pr(x = 1|e = 1)]Es

Pr(x̃ = 1 | x = 1)Pr(x = 1)

=
(1−Rs

1)C
s(1− α)Es

(1−Rs
1)C

s[(1− α)Es + (1− Es)]
≡ b1.

Above, we need to invoke Pr(x = 1) = Cs[(1−α)Es + (1−Es)]. Notice that α = 1 implies

Pr(e = 1 | x̃ = 1) = 0. In addition, α = 0 implies Pr(e = 1 | x̃ = 1) = Es. So α is

moderating the informativeness of the crime report.
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After observing x̃ = 0, we need to compute:

Pr(e = 1 | x̃ = 0) =
Pr(x̃ = 0 | e = 1)Pr(e = 1)

Pr(x̃ = 0)

=
Pr(x̃ = 0 | e = 1)Es

Pr(x̃ = 0 | x = 0)Pr(x = 0) + Pr(x̃ = 0 | x = 1)Pr(x = 1)

=
[Pr(x̃ = 0|e = 1, x = 0)Pr(x = 0|e = 1) + Pr(x̃ = 0|e = 1, x = 1)Pr(x = 1|e = 1)]Es

Pr(x = 0) +Rs
1 Pr(x = 1)

=
[Pr(x = 0|e = 1) +Rs

1 Pr(x = 1|e = 1)]Es

Pr(x = 0) +Rs
1 Pr(x = 1)

=
[1− Cs(1− α)(1−Rs

1)]E
s

1− Cs(1−Rs
1)(1− Esα)

≡ b0

Notice that b0 is strictly increasing in α, so the no-crime report is a more convincing signal

of effort when crime is more sensitive to effort.

For the equilibrium threshold of lying, we need to compute the difference in posteriors:

µ̄(Es, Cs, Rs
1) ≡ b0 − b1

=
Es(1− Es)α

(1− Esα)(1− Cs(1−Rs
1)(1− Esα))

Notice µ̄ > 0; µ̄ is strictly increasing in Cs and strictly decreasing in Rs
1. For Es close to

zero, µ̄ is strictly increasing in Es. For Es close to one, µ̄ is strictly decreasing. Finally, µ̄

is increasing in the crime-outcome sensitivity to effort, α.

The agent manipulates if and essentially only if η < η̂∗, and the cutpoint η̂∗ solves

µ̄(Es, Cs, H(η̂∗)) = η̂∗

Thus Rs
1 = H(η̂∗).

For the enforcement game, the Target has the same payoffs so Cs = G(1 − Es). To

complete the construction of the equilibrium, focus on the Agent’s payoff. When A exerts

effort, she expects to receive βCs − ρ in the enforcement stage. Moreover, with probability

1− Cs there is no illicit activity leading to outcome x = 0. With probability Csα, there is

illicit activity but no crime, leading to x = 0. With probability Cs(1 − α), there is illicit

activity and the crime outcome is x = 1. For each case in which x = 0, reporting payoffs

are b0. For each case in which x = 1, reporting payoffs are (1−Rs
1)b1+R

s
1(b0−E[η|η < µ̄]).

Hence, after exerting effort, A’s expected payoffs are

βCs − ρ+ (1− Cs + Csα)b0 + Cs(1− α)[(1−Rs
1)b1 +Rs

1(b0 − E[η|η < µ̄])].

When not exerting effort, A’s payoff in the enforcement game is 0. There is no crime if
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Figure D.1: Equilibrium quantities as a function of crime-outcome sensitivity to effort

Misreporting  Measurement Error  

Effort  Crime Activity  

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

0.53

0.54

0.55

0.56

0.57

0.17

0.18

0.19

0.20

0.40

0.45

0.50

0.55

0.60

0.65

0.5

0.6

0.7

0.8

0.9

Crime−outcome sensitivity to effort,  

  

α

Es Cs

Rs
1 Ms

Notes: Example generated assuming β = 0.4, ρ ∼ N (0.3, 0.1), γ ∼ N (0.15, 2.5), and η ∼ B(1, 3). Recall
that in this extension Pr(x = 1 | e, c) = e(1−α)c+ (1− e)c, so (1−α)c is the probability that crime occurs
after high enforcement effort. The baseline model assumed α = 1.

Cs = 0. If Cs = 1, then crime occurs. Thus, after low effort, A’s expected payoffs are

(1− Cs)b0 + Cs((1−Rs
1)b1 +Rs

1(b0 − E[η|η < µ̄])).

Comparing the preceding expressions, A exerts effort if and only if

ρ < Cs [β + αΨ(Es, Cs)]

where

Ψ(Es, Cs) = µ̄(1−Rs
1) +Rs

1E[η|η < µ̄]

This is analogous to the case analyzed in the main text. Note that crime-outcome sensi-

tivity α affects both the general incentives of the reporting stage (it multiplies Ψ) and the

equilibrium misreporting threshold (via µ̄, which is increasing in α).

To conclude this section, Figure D.1 presents a numerical example to illustrate compar-

ative statics with respect to how sensitive crime is to agent effort, i.e., α. Notice that as α
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moves away from one and closer to zero, effort decreases. As discussed above, this is driven

by two forces: smaller reputational benefits in µ̄ and smaller direct effects on the crime

outcome. As effort decreases crime increases. Both of these forces increase measurement

error because they increase the probability of the crime outcome occurring. Finally, as α be-

comes smaller, misreporting decreases. With the probability of agent effort decreasing and

the no-crime report becoming less indicative off high effort, reputational benefits decrease,

leading to less misreporting. This effect reduces measurement error. Overall, these two

countervailing forces lead to the non-monotonic relationship between α and measurement

error in the figure.

E Full-support equilibria with remedial policing

Setup

The setup of the game is the same as above, except for the definition of the crime statistic

x. Here, we assume that x = ec.

Full-support Equilibrium

Definition E.1. An equilibrium (s, b) has full support if Es ∈ (0, 1), Cs > 0, Rs
1 = 0 and

Rs
0 ∈ (0, 1).

The only difference concerns the misreporting probabilities: while the main text features

Rs
0 = 0 and Rs

1 ∈ (0, 1), here we consider data manipulation after no crime occurred.

As in the preventative policing model, our focus on full-support equilibria can to some

extent by justified by observing that both crime and no-crime reports should be sent in

equilibrium, see Lemma A.1.

Equilibrium Characterization

In a full-support equilibrium, posterior beliefs can be derived as follows. After x̃ = 1, we

have:

Pr(e = 1|x̃ = 1) = b1 =
Pr(e = 1)Pr(x̃ = 1|e = 1)

Pr(x̃ = 1)

=
Es [Cs + (1− Cs)Rs

0]

EsCs + (1− EsCs)Rs
0

.

Note that b1 is increasing in Es, increasing in C, and decreasing in R0.
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After x̃ = 0, we have:

Pr(e = 1|x̃ = 0) = b0 =
Pr(e = 1)Pr(x̃ = 1|e = 1)

Pr(x̃ = 0)

=
Es [Cs0 + (1− Cs)(1−Rs

0)]

CsEs0 + (1− CsEs)(1−Rs
0)

=
Es(1− Cs)

1− EsCs
.

Intuitively, when x̃ = 0 is reported, the principal can infer that x = 0 indeed occurred,

which is imperfectly informative about the agent’s actual effort choice e. By inspection, b0

is increasing in Es, decreasing in Cs, and does not depend on Rs
0.

Note that b1 > b0 in a full-support equilibrium (being defined as having Es < 1). For

equilibrium behavior, a key quantity will be the difference in these posterior beliefs, i.e.,

µ̄(Es, Cs, Rs
0) ≡ b1 − b0.

Note the following:

Lemma E.1. µ̄ is increasing in Cs and decreasing in Rs
0. Moreover, µ̄ is concave in Es

and satisfies:
∂µ̄

∂Es

∣∣∣∣
Es=0

> 0 and
∂µ̄

∂Es

∣∣∣∣
Es=1

< 0.

Proof. Differentiating µ̄ with respect to Es yields:

∂µ̄

∂Es
=
Rs

0 [C
s + (1− Cs)Rs

0]

Pr(x̃ = 1)2
− 1− Cs

Pr(x̃ = 0)2

Evaluting this at Es = 0 yields Cs

R0
> 0 while evaluating this at Es = 1 yields

−Cs(1−Rs
0)

Cs+(1−Cs)Rs
0
<

0.

Moreover, we have:

∂2µ̄

∂(Es)2
=

−2Rs
0 [C

s + (1− Cs)R0]

Pr(x̃ = 1)3
∂ Pr(x̃ = 1)

∂Es
−
[
−2(1− Cs)

Pr(x̃ = 0)3
∂ Pr(x̃ = 0)

∂Es

]

Since ∂ Pr(x̃=1)
∂Es = Cs(1−Rs

0) > 0 and ∂ Pr(x̃=0)
∂Es = −Cs < 0, the result follows.

At the reporting stage, when x = 0, Rs
0 is determined as follows: the expected utility of

choosing x̃ = 0 is b0 while the expected utility of x̃ = 1 is b1 − η. A threshold strategy is

optimal. The equilibrium threshold η̂∗ is given by the solution to

µ(Es, Cs, H(η̂∗)) = η̂∗ (E.1)

The left-hand side of the preceding equality is decreasing in η̂ while the right-hand side is
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increasing in η̂, so the solution is unique. Note that by the IFT, η̂∗ is non-monotone in Es

and increasing in Cs. Specifically, we have:

Lemma E.2. We have:

∂η̂∗

∂E
= −

∂µ̄
∂E

∂µ̄
∂R0

h(η̂)− 1
and

∂η̂∗

∂C
= −

∂µ̄
∂C

∂µ̄
∂R0

h(η̂)− 1
> 0

Proof. Follows directly from the IFT and Lemma E.1.

At the encounter stage, the best response function of the Target is the same as before:

γ̂∗ = 1− Es (E.2)

For the agent, the expected utility of effort is:

Csβ − ρ+ Pr(x = 1|e = 1)b1 + Pr(x = 0|e = 1) [Rs
0 (b1 −E[η|η < η̂∗]) + (1−Rs

0)b0]

Furthermore, the expected utility of no effort is:

Rs
0 (b1 −E[η|η < η̂∗]) + (1−Rs

0)b0

Thus, the agent exerts effort if and only if:

Cs [β +Ψ(Es, Cs)] ≥ ρ,

where

Ψ(Es, Cs) ≡ (1−Rs
0)µ̄ (E

s, Cs, H(η̂∗)) +Rs
0E[η|η < η̂∗]

= (1−H(η̂∗)) η̂∗) +

∫ η̂∗

η
ηh(η)dη

Plugging this into the preceding expressions, an equilibrium (s, b) is characterized by a

threshold strategy, ρ̂∗, that solves

G(1− F (ρ̂))[β +Ψ(F (ρ̂), G(1− F (ρ̂)))]︸ ︷︷ ︸
≡Λ(ρ̂)

= ρ̂. (E.3)

Proposition E.1 summarizes the analysis thus far.

Proposition E.1. If (s, b) is a full-support equilibrium, then the following hold:

1. The agent exerts effort if and only if ρ < ρ̂∗ where ρ∗ solves Equation E.3, so Es =

F (ρ̂∗).
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2. The target engages in illicit behavior if and only if γ < γ̂∗ where γ̂∗ solves Equation

E.2, so Cs = G(γ̂∗).

3. In the reporting subgame, the agent never misclassifies the no-crime statistic x = 1,

but misclassifies after crime statistic x = 0 if and only if η < η̂∗, where η̂∗ solves

Equation E.1. So Rs
0 = H(η̂∗).

F Equilibrium uniqueness

F.1 The function Λ is decreasing on a relevant range

Before proceeding, we want to know how Ψ changes as a function of Es and Cs. Recall

that Ψ(Es, Cs) = (1−H(η̂∗))η̂∗ +
∫ η̂∗

η ηh(η)dη. By Leibniz’s rule, we can write

∂Ψ

∂Cs
= −h(η̂∗)∂η̂

∗

∂C
η̂∗ + (1−H(η̂∗))

∂η̂∗

∂Cs
+ η̂∗h(η̂∗)

∂η̂∗

∂C

= h(η̂∗)
∂η̂∗

∂C
(η̂∗ − η̂∗) + (1−H(η̂∗))

∂η̂∗

∂Cs

= (1−H(η̂∗))
∂η̂∗

∂Cs
≥ 0.

Second, a similar analysis shows

∂Ψ

∂Es
= (1−H(η̂∗))

∂η̂∗

∂Es
≥ 0.

The next proposition states a sufficient condition for a unique equilibrium.

Proposition F.1. There is a unique solution to Equation 3 if

min{g(γ) | γ ∈ [1− F (G(1)(β + 1)), 1− F (0)]} ≥

max

{
1−G(0)(1−H(1))

F (0)(1− F (0))(1−H(1))
,

1−G(0)(1−H(1))

F (G(1)(β + 1))(1− F (G(1)(β + 1)))(1−H(1))

}
.

Proof. First, note that right-side of Equation 3 is strictly increasing in ρ. Thus, a sufficient

condition for a unique solution is that Λ is decreasing over all feasible equilibrium cutpoints

ρ̂.

Second, note that derivative of Λ with respect to ρ is

∂Λ

∂ρ̂
= −g(1− F (ρ̂))f(ρ̂)[β +Ψ(F (ρ̂), G(1− F (ρ̂)))] +

G(1− F (ρ̂))

[
∂Ψ

∂Es
f(ρ̂)− ∂Ψ

∂Cs
g(1− F (ρ̂))f(ρ̂)

]
.
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To sign this expression, substitute our expressions for ∂Ψ
∂Es and ∂Ψ

∂Cs :

∂Λ

∂ρ̂
= −g(1− F (ρ̂))f(ρ̂)[β +Ψ(F (ρ̂), G(1− F (ρ̂)))] +

G(1− F (ρ̂))f(ρ̂)(1−H(η̂∗))

[
∂η̂∗

∂Es
− ∂η̂∗

∂Cs
g(1− F (ρ̂))

]
.

Using Lemma 2, we substitute our expressions for ∂η̂∗

∂Es and ∂η̂∗

∂Cs to get

∂Λ

∂ρ̂
= −g(1− F (ρ̂))f(ρ̂)[β +Ψ(F (ρ̂), G(1− F (ρ̂)))] +

G(1− F (ρ̂))f(ρ̂)
(1−H(η̂∗))

1− ∂µ̄
∂Rs

1
h(η̂∗)

[
∂µ̄

∂Es
− ∂µ̄

∂Cs
g(1− F (ρ̂))

]
.

Notice ∂µ̄
∂Es > 0 and ∂µ̄

∂Cs > 0. Thus,
[

∂µ̄
∂Es − ∂µ̄

∂Cs g(1− F (ρ̂))
]
≤ 0 implies ∂Λ

∂ρ̂ < 0. Substi-

tuting expressions for ∂µ̄
∂Es and ∂µ̄

∂Cs ,
∂Λ
∂ρ̂ < 0 if

g(1− F (ρ̂)) ≥ 1− Cs(1−Rs
1)

Es(1− Es)(1−Rs
1)

≡ δg.

Careful inspection reveals that δg is strictly decreasing in Cs and strictly increasing in Rs
1.

Recall Cs ≥ G(0) and Rs
1 ≤ H(1) in any equilibrium (s, b) Thus, a lower bound on δg is

δg|Rs
1=H(1),Cs=G(0). Likewise, Es ∈ [F (0), F (G(1)(β + 1))] in any equilibrium (s, b), and δg

is convex in Es. Thus, a upper bound on δg is

max{δg|Rs
1=H(1),Cs=G(0),Es=F (0), δ

g|Rs
1=H(1),Cs=G(0),Es=F (G(1)(β+1))},

which is the right-hand of the inequality in the statement of the proposition. Finally, when

the agent uses threshold strategy ρ̂, Es = F (ρ̂) and Es ∈ Es ∈ [F (0), F (G(1)(β + 1))] in

any equilibrium. So a lower bound for g(1−F (ρ̂)) is min{g(γ) | γ ∈ [1−F (G(1)(β+1)), 1−
F (0)]}, which is the left-and side of the inequality in the statement of the proposition.

F.2 Uniqueness with enough noise in F , G, and H

Notice that Cs, Rs
1, and E

s serve as the induced probabilities of effort, crime and misclas-

sification. Collect these probabilities in the vector πs = (Rs
1, C

s, Es). Define the function

E : [0, 1]3 → R3 as follows:

E(πs) =

 Es − F (Cs[β +Ψ(πs)])

Cs −G(1− Es)

H(µ̄(πs))−Rs
1

 ,
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where Ψ : [0, 1]3 → R can be expressed as

Ψ(πs) = (1−Rs
1)µ̄(π

s) +

∫ µ̄(πs)

η
ηh(η)dη.

An equilibrium is πs such that E(πs) = 0. Given a solution πs such that E(πs) = 0,

one can construct the thresholds in Proposition 1 because Es = F (ρ̂∗), Cs = G(γ̂∗), and

Rs = H(η̂∗). Focusing on Ψ, we can write the partial derivatives of Ψ as follows:

∂Ψ

∂Es
= [(1−Rs

1) + µ̄(πs)h(µ̄(πs))]
∂µ̄

∂Es
≥ 0

∂Ψ

∂Cs
= [(1−Rs

1) + µ̄(πs)h(µ̄(πs))]
∂µ̄

∂Cs
≥ 0

∂Ψ

∂Rs
1

= [(1−Rs
1) + µ̄(πs)h(µ̄(πs))]

∂µ̄

∂Rs
1

− µ̄(πs) ≤ 0.

Notice the inequalities above hold strictly when either R1
s < 1, or Es > 0 with h(µ) > 0 for

all µ ∈ [0, 1]. With these partial derivatives in hand, we can write the Jacobian of E as

JE =


−f(Cs(β +Ψ))Cs ∂Ψ

∂Rs
1

−f(Cs(β +Ψ))
[
(β +Ψ) + Cs Ψ

∂Cs

]
1− f(Cs(β +Ψ))Cs ∂Ψ

∂Es

0 1 g(1− Es)

−1 + h(µ̄) ∂µ̄
∂Rs

1
h(µ̄) ∂µ̄

∂Cs h(µ̄) ∂µ̄
∂Es

 .
Notice the Jacobian JE is a 3 × 3 matrix. For N ⊂ {1, 2, 3}, let JE−N denote the

principal submatrix of JE formed by deleting the rows and columns in N . So the diagonal

of JE comprises the values JE−{2,3}, JE−{1,3}, and JE−{1,2}. Recall that a matrix is a P-

matrix if all of its if all its principal minors (determinants of a principal submatrix) are

positive.

Lemma F.1. The Jaobian JE is a P-matrix at πs = (Rs
1, C

s, Es) ∈ [0, 1]3 if the following

conditions hold.

1. h(µ) > 0 for all µ ∈ [0, 1]

2. f(Cs(β +Ψ)) > 0

3. Rs
1 < 1

4. ∂µ̄
∂Es > g(1− Es) ∂µ̄

∂Cs

5. 1− f(Cs(β +Ψ))Cs ∂Ψ
∂Es ≥ 0

Proof. Fix πs ∈ D. We need to show that the principal minors of JE are positive. Under
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the five conditions above, the sign of JE can be written as

sgn(JE) =

 1 −1 {0, 1}
0 1 {0, 1}
−1 1 1

 .
Above, we use {0, 1} to represent the possibility that an entry is either 0 or positive. With

this in hand, we can consider the 7 principal submatrices of JE .

• Starting with the diagonals, JE−{2,3}, JE−{1,3}, and JE−{1,2}. Notice JE−{1,3} = 1 > 0.

JE−{1,2} = h(µ̄) ∂µ̄
∂Es , which is greater than 0 if h(µ) > 0 for all µ ∈ [0, 1], as covered in

condition 1. Finally, JE−{2,3} = −f(Cs(β +Ψ))Cs ∂Ψ
∂Rs

1
. This value is strictly positive

by conditions 2 and 3.

• Now focus on JE−{1}. The determinant of this matrix is

h(µ̄)
∂µ̄

∂Es
− g(1− Es)h(µ̄)

∂µ̄

∂Cs
.

Because h(µ) > 0 for all µ ∈ [0, 1], this expression is strictly positive when ∂µ̄
∂Es >

g(1− Es) ∂µ̄
∂Cs , which is covered in condition 4.

• Now focus on JE−{2}. Examining sgn(JE) reveals that the determinant of JE−{2} is

strictly positive because 1− f(Cs(β +Ψ))Cs ∂Ψ
∂Es ≥ 0 from condition 5.

• Now focus on JE−{3}. The sign matrix reveals that this determinant is strictly positive.

• Finally, we need to compute the determinant of JE . We can do this as follows:

>0︷ ︸︸ ︷
JE−{2,3} ·

∣∣JE−{1}
∣∣−

≤0︷ ︸︸ ︷(
−f(Cs(β +Ψ))

[
(β +Ψ) + Cs Ψ

∂Cs

]) ∣∣∣∣∣
[

0 g(1− Es)

−1 + h(µ̄) ∂µ̄
∂Rs

1
h(µ̄) ∂µ̄

∂Es

]∣∣∣∣∣ +

(
1− f(Cs(β +Ψ))Cs ∂Ψ

∂Es

)
︸ ︷︷ ︸

≥ by condition 5

∣∣∣∣∣
[

0 1

−1 + h(µ̄) ∂µ̄
∂Rs

1
h(µ̄) ∂µ̄

∂Cs

]∣∣∣∣∣︸ ︷︷ ︸
>0

.

Thus, the determinant of JE is positive given the five conditions above.

Besides condition 1, the conditions in Lemma F.1 are restrictions on endogenous quan-

tifies of interest. To rectify this, recall Rs
1 ≤ H(1) at any solution πs (equilibrium)

such that E(πs) = 0. Likewise, Cs = G(1 − Es) and Es ∈ [0, 1], so Cs ∈ [G(0), G(1)]

at any solution πs (equilibrium) such that E(πs) = 0. Finally, Es = F (Cs(β + Ψ)),

where 0 ≤ Cs(β + Ψ) ≤ β + 1. Hence, Es ∈ [F (0), F (G(1)(β + 1))] at any solution πs
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(equilibrium) such that E(πs) = 0. Thus, we can restrict the domain in Lemma F.1 to

D̃ = [0, H(1)]× [0, G(1)]× [F (0), F (G(1)(β + 1))], where D̃ ⊆ [0, 1]3. That is, any πs such

that E(πs) = 0 will fall within D̃.

Second, focus on Condition 4. Using our expressions for ∂µ̄
∂Es and ∂µ̄

∂Cs , we can rewrite

this condition as

g(1− Es) <
1− Cs(1−Rs

1)

Es(1− Es)(1−Rs
1)

≡ δg.

Recall δg is strictly decreasing in Cs and strictly increasing in Rs
1. By construction of the

domain D̃, Rs
1 ≥ 0 and Cs ≤ G(1). Likewise, it is convex in Es, with a global minimum at

Es = 1
2 for all Cs, Rs

1. As such, δ
g is bounded below by δg ≥ 4(1−G(1)).

Third, focus on Condition 5, which is equivalent to

f(Cs(β + ψ)) ≤
(
Cs[(1−Rs

1) + µ̄(πs)h(µ̄(πs))]
∂µ̄

∂Es

)−1

(F.1)

We want to find a lower bound for the right-hand side of Equation F.1. Here, note that(
Cs[(1−Rs

1) + µ̄(πs)h(µ̄(πs))]
∂µ̄

∂Es

)−1

≥
(
G(1)[1 + h(µ̄(πs))]

∂µ̄

∂Es

)−1

≥
(

1

G(1)

)
(1− Cs(1− Es)(1−Rs

1))
2

1− Cs(1−Rs
1)︸ ︷︷ ︸

≡δf

.

Notice δf is a decreasing function of Es. When Es ≥ 1
2 , δ

f , as a function of Cs(1 − Rs
1),

is minimized at Cs(1 − Rs
1) = 0, in which case the minimum is 1. Furthermore, when

Es < 1
2 , δ

f is minimized, as a function of Cs(1 − Rs
1), at C

s(1 − Rs
1) = 1−2Es

1−Es , in which

case the minimum is 4(1 − Es)Es. This quantity is less than 1 and is strictly increasing

in Es. Thus, assuming F (0) < 1
2 , a lower bound on the right-hand side of Equation F.1

is 4(1−F (0))F (0)
G(1) . Putting these three results together, we can state a new result—along

the lines of Lemma F.1—that just has restrictions on the primitives and guarantees the

Jacobian JE is a P-matrix for all potential solutions πs ∈ D̃.

Lemma F.2. Define D̃ = [0, H(1)]× [0, G(1)]× [F (0), F (G(1)(β + 1))]. The Jacobian JE
is a P-matrix for all πs = (Rs

1, C
s, Es) ∈ D̃ if the following conditions hold.

1. f(ρ) > 0 for all ρ ∈ [0, G(1)(β + 1)]

2. h(µ) > 0 for all µ ∈ [0, 1]

3. H(1) < 1

4. g(γ) < 4(1−G(1)) for all γ ∈ [1− F (G(1)(β + 1)), 1− F (0)].

5. F (0) ≤ 1
2 and f(ρ) ≤ 4(1−F (0))F (0)

G(1) for all ρ ∈ [0, G(1)(β + 1)].
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The next proposition shows that the conditions in Lemma F.2 guarantee a unique equi-

librium.

Proposition F.2. There is a unique equilibrium, i.e., a unique solution to E(πs) = 0 if the

following conditions hold.

1. f(ρ) > 0 for all ρ ∈ [0, G(1)(β + 1)]

2. h(µ) > 0 for all µ ∈ [0, 1]

3. H(1) < 1

4. g(γ) < 4(1−G(1)) for all γ ∈ [1− F (G(1)(β + 1)), 1− F (0)].

5. F (0) ≤ 1
2 and f(ρ) ≤ 4(1−F (0))F (0)

G(1) for all ρ ∈ [0, G(1)(β + 1)]

Proof. Recall that πs is a solution to E(πs) = 0 only if πs ∈ D̃. Because E is differentiable

and we can restrict its domain to a Cartisan product of intervals, i.e., D̃ = [0, H(1)] ×
[0, G(1)]× [F (0), F (G(1)(β+1))], Gale and Nikaido’s (1965) theorem implies that a solution

in D̃ must be unique because JE is a P-matrix at all values πs ∈ D̃ by Lemma F.2.

The five conditions in Proposition F.2 can be interpreted as requiring enough noise in

the random variables ρ, γ, and η. Conditions 1 and 2 require positive density over a relevant

interval. Condition 3 requires that lying costs can be large enough. Condition 4 says the

density from which opportunity costs are drawn from needs to be sufficiently flat. Condition

5 says the density from which effort costs are drawn from needs to be sufficiently flat.
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